1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
//===-- sanitizer_flat_map.h ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Part of the Sanitizer Allocator.
//
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_FLAT_MAP_H
#define SANITIZER_FLAT_MAP_H
#include "sanitizer_atomic.h"
#include "sanitizer_common.h"
#include "sanitizer_internal_defs.h"
#include "sanitizer_local_address_space_view.h"
#include "sanitizer_mutex.h"
namespace __sanitizer {
// Call these callbacks on mmap/munmap.
struct NoOpMapUnmapCallback {
void OnMap(uptr p, uptr size) const {}
void OnUnmap(uptr p, uptr size) const {}
};
// Maps integers in rage [0, kSize) to values.
template <typename T, u64 kSize,
typename AddressSpaceViewTy = LocalAddressSpaceView>
class FlatMap {
public:
using AddressSpaceView = AddressSpaceViewTy;
void Init() { internal_memset(map_, 0, sizeof(map_)); }
constexpr uptr size() const { return kSize; }
bool contains(uptr idx) const {
CHECK_LT(idx, kSize);
return true;
}
T &operator[](uptr idx) {
DCHECK_LT(idx, kSize);
return map_[idx];
}
const T &operator[](uptr idx) const {
DCHECK_LT(idx, kSize);
return map_[idx];
}
private:
T map_[kSize];
};
// TwoLevelMap maps integers in range [0, kSize1*kSize2) to values.
// It is implemented as a two-dimensional array: array of kSize1 pointers
// to kSize2-byte arrays. The secondary arrays are mmaped on demand.
// Each value is initially zero and can be set to something else only once.
// Setting and getting values from multiple threads is safe w/o extra locking.
template <typename T, u64 kSize1, u64 kSize2,
typename AddressSpaceViewTy = LocalAddressSpaceView,
class MapUnmapCallback = NoOpMapUnmapCallback>
class TwoLevelMap {
static_assert(IsPowerOfTwo(kSize2), "Use a power of two for performance.");
public:
using AddressSpaceView = AddressSpaceViewTy;
void Init() {
mu_.Init();
internal_memset(map1_, 0, sizeof(map1_));
}
void TestOnlyUnmap() {
for (uptr i = 0; i < kSize1; i++) {
T *p = Get(i);
if (!p)
continue;
MapUnmapCallback().OnUnmap(reinterpret_cast<uptr>(p), MmapSize());
UnmapOrDie(p, kSize2);
}
Init();
}
uptr MemoryUsage() const {
uptr res = 0;
for (uptr i = 0; i < kSize1; i++) {
T *p = Get(i);
if (!p)
continue;
res += MmapSize();
}
return res;
}
constexpr uptr size() const { return kSize1 * kSize2; }
constexpr uptr size1() const { return kSize1; }
constexpr uptr size2() const { return kSize2; }
bool contains(uptr idx) const {
CHECK_LT(idx, kSize1 * kSize2);
return Get(idx / kSize2);
}
const T &operator[](uptr idx) const {
DCHECK_LT(idx, kSize1 * kSize2);
T *map2 = GetOrCreate(idx / kSize2);
return *AddressSpaceView::Load(&map2[idx % kSize2]);
}
T &operator[](uptr idx) {
DCHECK_LT(idx, kSize1 * kSize2);
T *map2 = GetOrCreate(idx / kSize2);
return *AddressSpaceView::LoadWritable(&map2[idx % kSize2]);
}
private:
constexpr uptr MmapSize() const {
return RoundUpTo(kSize2 * sizeof(T), GetPageSizeCached());
}
T *Get(uptr idx) const {
DCHECK_LT(idx, kSize1);
return reinterpret_cast<T *>(
atomic_load(&map1_[idx], memory_order_acquire));
}
T *GetOrCreate(uptr idx) const {
DCHECK_LT(idx, kSize1);
// This code needs to use memory_order_acquire/consume, but we use
// memory_order_relaxed for performance reasons (matters for arm64). We
// expect memory_order_relaxed to be effectively equivalent to
// memory_order_consume in this case for all relevant architectures: all
// dependent data is reachable only by dereferencing the resulting pointer.
// If relaxed load fails to see stored ptr, the code will fall back to
// Create() and reload the value again with locked mutex as a memory
// barrier.
T *res = reinterpret_cast<T *>(atomic_load_relaxed(&map1_[idx]));
if (LIKELY(res))
return res;
return Create(idx);
}
NOINLINE T *Create(uptr idx) const {
SpinMutexLock l(&mu_);
T *res = Get(idx);
if (!res) {
res = reinterpret_cast<T *>(MmapOrDie(MmapSize(), "TwoLevelMap"));
MapUnmapCallback().OnMap(reinterpret_cast<uptr>(res), kSize2);
atomic_store(&map1_[idx], reinterpret_cast<uptr>(res),
memory_order_release);
}
return res;
}
mutable StaticSpinMutex mu_;
mutable atomic_uintptr_t map1_[kSize1];
};
template <u64 kSize, typename AddressSpaceViewTy = LocalAddressSpaceView>
using FlatByteMap = FlatMap<u8, kSize, AddressSpaceViewTy>;
template <u64 kSize1, u64 kSize2,
typename AddressSpaceViewTy = LocalAddressSpaceView,
class MapUnmapCallback = NoOpMapUnmapCallback>
using TwoLevelByteMap =
TwoLevelMap<u8, kSize1, kSize2, AddressSpaceViewTy, MapUnmapCallback>;
} // namespace __sanitizer
#endif
|