1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
//===-- sanitizer_procmaps_mac.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Information about the process mappings (Mac-specific parts).
//===----------------------------------------------------------------------===//
#include "sanitizer_platform.h"
#if SANITIZER_APPLE
#include "sanitizer_common.h"
#include "sanitizer_placement_new.h"
#include "sanitizer_procmaps.h"
#include <mach-o/dyld.h>
#include <mach-o/loader.h>
#include <mach/mach.h>
// These are not available in older macOS SDKs.
#ifndef CPU_SUBTYPE_X86_64_H
#define CPU_SUBTYPE_X86_64_H ((cpu_subtype_t)8) /* Haswell */
#endif
#ifndef CPU_SUBTYPE_ARM_V7S
#define CPU_SUBTYPE_ARM_V7S ((cpu_subtype_t)11) /* Swift */
#endif
#ifndef CPU_SUBTYPE_ARM_V7K
#define CPU_SUBTYPE_ARM_V7K ((cpu_subtype_t)12)
#endif
#ifndef CPU_TYPE_ARM64
#define CPU_TYPE_ARM64 (CPU_TYPE_ARM | CPU_ARCH_ABI64)
#endif
namespace __sanitizer {
// Contains information used to iterate through sections.
struct MemoryMappedSegmentData {
char name[kMaxSegName];
uptr nsects;
const char *current_load_cmd_addr;
u32 lc_type;
uptr base_virt_addr;
uptr addr_mask;
};
template <typename Section>
static void NextSectionLoad(LoadedModule *module, MemoryMappedSegmentData *data,
bool isWritable) {
const Section *sc = (const Section *)data->current_load_cmd_addr;
data->current_load_cmd_addr += sizeof(Section);
uptr sec_start = (sc->addr & data->addr_mask) + data->base_virt_addr;
uptr sec_end = sec_start + sc->size;
module->addAddressRange(sec_start, sec_end, /*executable=*/false, isWritable,
sc->sectname);
}
void MemoryMappedSegment::AddAddressRanges(LoadedModule *module) {
// Don't iterate over sections when the caller hasn't set up the
// data pointer, when there are no sections, or when the segment
// is executable. Avoid iterating over executable sections because
// it will confuse libignore, and because the extra granularity
// of information is not needed by any sanitizers.
if (!data_ || !data_->nsects || IsExecutable()) {
module->addAddressRange(start, end, IsExecutable(), IsWritable(),
data_ ? data_->name : nullptr);
return;
}
do {
if (data_->lc_type == LC_SEGMENT) {
NextSectionLoad<struct section>(module, data_, IsWritable());
#ifdef MH_MAGIC_64
} else if (data_->lc_type == LC_SEGMENT_64) {
NextSectionLoad<struct section_64>(module, data_, IsWritable());
#endif
}
} while (--data_->nsects);
}
MemoryMappingLayout::MemoryMappingLayout(bool cache_enabled) {
Reset();
}
MemoryMappingLayout::~MemoryMappingLayout() {
}
bool MemoryMappingLayout::Error() const {
return false;
}
// More information about Mach-O headers can be found in mach-o/loader.h
// Each Mach-O image has a header (mach_header or mach_header_64) starting with
// a magic number, and a list of linker load commands directly following the
// header.
// A load command is at least two 32-bit words: the command type and the
// command size in bytes. We're interested only in segment load commands
// (LC_SEGMENT and LC_SEGMENT_64), which tell that a part of the file is mapped
// into the task's address space.
// The |vmaddr|, |vmsize| and |fileoff| fields of segment_command or
// segment_command_64 correspond to the memory address, memory size and the
// file offset of the current memory segment.
// Because these fields are taken from the images as is, one needs to add
// _dyld_get_image_vmaddr_slide() to get the actual addresses at runtime.
void MemoryMappingLayout::Reset() {
// Count down from the top.
// TODO(glider): as per man 3 dyld, iterating over the headers with
// _dyld_image_count is thread-unsafe. We need to register callbacks for
// adding and removing images which will invalidate the MemoryMappingLayout
// state.
data_.current_image = _dyld_image_count();
data_.current_load_cmd_count = -1;
data_.current_load_cmd_addr = 0;
data_.current_magic = 0;
data_.current_filetype = 0;
data_.current_arch = kModuleArchUnknown;
internal_memset(data_.current_uuid, 0, kModuleUUIDSize);
}
// The dyld load address should be unchanged throughout process execution,
// and it is expensive to compute once many libraries have been loaded,
// so cache it here and do not reset.
static mach_header *dyld_hdr = 0;
static const char kDyldPath[] = "/usr/lib/dyld";
static const int kDyldImageIdx = -1;
// static
void MemoryMappingLayout::CacheMemoryMappings() {
// No-op on Mac for now.
}
void MemoryMappingLayout::LoadFromCache() {
// No-op on Mac for now.
}
static bool IsDyldHdr(const mach_header *hdr) {
return (hdr->magic == MH_MAGIC || hdr->magic == MH_MAGIC_64) &&
hdr->filetype == MH_DYLINKER;
}
// _dyld_get_image_header() and related APIs don't report dyld itself.
// We work around this by manually recursing through the memory map
// until we hit a Mach header matching dyld instead. These recurse
// calls are expensive, but the first memory map generation occurs
// early in the process, when dyld is one of the only images loaded,
// so it will be hit after only a few iterations. These assumptions don't hold
// on macOS 13+ anymore (dyld itself has moved into the shared cache).
static mach_header *GetDyldImageHeaderViaVMRegion() {
vm_address_t address = 0;
while (true) {
vm_size_t size = 0;
unsigned depth = 1;
struct vm_region_submap_info_64 info;
mach_msg_type_number_t count = VM_REGION_SUBMAP_INFO_COUNT_64;
kern_return_t err =
vm_region_recurse_64(mach_task_self(), &address, &size, &depth,
(vm_region_info_t)&info, &count);
if (err != KERN_SUCCESS) return nullptr;
if (size >= sizeof(mach_header) && info.protection & kProtectionRead) {
mach_header *hdr = (mach_header *)address;
if (IsDyldHdr(hdr)) {
return hdr;
}
}
address += size;
}
}
extern "C" {
struct dyld_shared_cache_dylib_text_info {
uint64_t version; // current version 2
// following fields all exist in version 1
uint64_t loadAddressUnslid;
uint64_t textSegmentSize;
uuid_t dylibUuid;
const char *path; // pointer invalid at end of iterations
// following fields all exist in version 2
uint64_t textSegmentOffset; // offset from start of cache
};
typedef struct dyld_shared_cache_dylib_text_info
dyld_shared_cache_dylib_text_info;
extern bool _dyld_get_shared_cache_uuid(uuid_t uuid);
extern const void *_dyld_get_shared_cache_range(size_t *length);
extern int dyld_shared_cache_iterate_text(
const uuid_t cacheUuid,
void (^callback)(const dyld_shared_cache_dylib_text_info *info));
} // extern "C"
static mach_header *GetDyldImageHeaderViaSharedCache() {
uuid_t uuid;
bool hasCache = _dyld_get_shared_cache_uuid(uuid);
if (!hasCache)
return nullptr;
size_t cacheLength;
__block uptr cacheStart = (uptr)_dyld_get_shared_cache_range(&cacheLength);
CHECK(cacheStart && cacheLength);
__block mach_header *dyldHdr = nullptr;
int res = dyld_shared_cache_iterate_text(
uuid, ^(const dyld_shared_cache_dylib_text_info *info) {
CHECK_GE(info->version, 2);
mach_header *hdr =
(mach_header *)(cacheStart + info->textSegmentOffset);
if (IsDyldHdr(hdr))
dyldHdr = hdr;
});
CHECK_EQ(res, 0);
return dyldHdr;
}
const mach_header *get_dyld_hdr() {
if (!dyld_hdr) {
// On macOS 13+, dyld itself has moved into the shared cache. Looking it up
// via vm_region_recurse_64() causes spins/hangs/crashes.
if (GetMacosAlignedVersion() >= MacosVersion(13, 0)) {
dyld_hdr = GetDyldImageHeaderViaSharedCache();
if (!dyld_hdr) {
VReport(1,
"Failed to lookup the dyld image header in the shared cache on "
"macOS 13+ (or no shared cache in use). Falling back to "
"lookup via vm_region_recurse_64().\n");
dyld_hdr = GetDyldImageHeaderViaVMRegion();
}
} else {
dyld_hdr = GetDyldImageHeaderViaVMRegion();
}
CHECK(dyld_hdr);
}
return dyld_hdr;
}
// Next and NextSegmentLoad were inspired by base/sysinfo.cc in
// Google Perftools, https://github.com/gperftools/gperftools.
// NextSegmentLoad scans the current image for the next segment load command
// and returns the start and end addresses and file offset of the corresponding
// segment.
// Note that the segment addresses are not necessarily sorted.
template <u32 kLCSegment, typename SegmentCommand>
static bool NextSegmentLoad(MemoryMappedSegment *segment,
MemoryMappedSegmentData *seg_data,
MemoryMappingLayoutData *layout_data) {
const char *lc = layout_data->current_load_cmd_addr;
layout_data->current_load_cmd_addr += ((const load_command *)lc)->cmdsize;
if (((const load_command *)lc)->cmd == kLCSegment) {
const SegmentCommand* sc = (const SegmentCommand *)lc;
uptr base_virt_addr, addr_mask;
if (layout_data->current_image == kDyldImageIdx) {
base_virt_addr = (uptr)get_dyld_hdr();
// vmaddr is masked with 0xfffff because on macOS versions < 10.12,
// it contains an absolute address rather than an offset for dyld.
// To make matters even more complicated, this absolute address
// isn't actually the absolute segment address, but the offset portion
// of the address is accurate when combined with the dyld base address,
// and the mask will give just this offset.
addr_mask = 0xfffff;
} else {
base_virt_addr =
(uptr)_dyld_get_image_vmaddr_slide(layout_data->current_image);
addr_mask = ~0;
}
segment->start = (sc->vmaddr & addr_mask) + base_virt_addr;
segment->end = segment->start + sc->vmsize;
// Most callers don't need section information, so only fill this struct
// when required.
if (seg_data) {
seg_data->nsects = sc->nsects;
seg_data->current_load_cmd_addr =
(const char *)lc + sizeof(SegmentCommand);
seg_data->lc_type = kLCSegment;
seg_data->base_virt_addr = base_virt_addr;
seg_data->addr_mask = addr_mask;
internal_strncpy(seg_data->name, sc->segname,
ARRAY_SIZE(seg_data->name));
}
// Return the initial protection.
segment->protection = sc->initprot;
segment->offset = (layout_data->current_filetype ==
/*MH_EXECUTE*/ 0x2)
? sc->vmaddr
: sc->fileoff;
if (segment->filename) {
const char *src = (layout_data->current_image == kDyldImageIdx)
? kDyldPath
: _dyld_get_image_name(layout_data->current_image);
internal_strncpy(segment->filename, src, segment->filename_size);
}
segment->arch = layout_data->current_arch;
internal_memcpy(segment->uuid, layout_data->current_uuid, kModuleUUIDSize);
return true;
}
return false;
}
ModuleArch ModuleArchFromCpuType(cpu_type_t cputype, cpu_subtype_t cpusubtype) {
cpusubtype = cpusubtype & ~CPU_SUBTYPE_MASK;
switch (cputype) {
case CPU_TYPE_I386:
return kModuleArchI386;
case CPU_TYPE_X86_64:
if (cpusubtype == CPU_SUBTYPE_X86_64_ALL) return kModuleArchX86_64;
if (cpusubtype == CPU_SUBTYPE_X86_64_H) return kModuleArchX86_64H;
CHECK(0 && "Invalid subtype of x86_64");
return kModuleArchUnknown;
case CPU_TYPE_ARM:
if (cpusubtype == CPU_SUBTYPE_ARM_V6) return kModuleArchARMV6;
if (cpusubtype == CPU_SUBTYPE_ARM_V7) return kModuleArchARMV7;
if (cpusubtype == CPU_SUBTYPE_ARM_V7S) return kModuleArchARMV7S;
if (cpusubtype == CPU_SUBTYPE_ARM_V7K) return kModuleArchARMV7K;
CHECK(0 && "Invalid subtype of ARM");
return kModuleArchUnknown;
case CPU_TYPE_ARM64:
return kModuleArchARM64;
default:
CHECK(0 && "Invalid CPU type");
return kModuleArchUnknown;
}
}
static const load_command *NextCommand(const load_command *lc) {
return (const load_command *)((const char *)lc + lc->cmdsize);
}
static void FindUUID(const load_command *first_lc, u8 *uuid_output) {
for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) {
if (lc->cmd != LC_UUID) continue;
const uuid_command *uuid_lc = (const uuid_command *)lc;
const uint8_t *uuid = &uuid_lc->uuid[0];
internal_memcpy(uuid_output, uuid, kModuleUUIDSize);
return;
}
}
static bool IsModuleInstrumented(const load_command *first_lc) {
for (const load_command *lc = first_lc; lc->cmd != 0; lc = NextCommand(lc)) {
if (lc->cmd != LC_LOAD_DYLIB) continue;
const dylib_command *dylib_lc = (const dylib_command *)lc;
uint32_t dylib_name_offset = dylib_lc->dylib.name.offset;
const char *dylib_name = ((const char *)dylib_lc) + dylib_name_offset;
dylib_name = StripModuleName(dylib_name);
if (dylib_name != 0 && (internal_strstr(dylib_name, "libclang_rt."))) {
return true;
}
}
return false;
}
bool MemoryMappingLayout::Next(MemoryMappedSegment *segment) {
for (; data_.current_image >= kDyldImageIdx; data_.current_image--) {
const mach_header *hdr = (data_.current_image == kDyldImageIdx)
? get_dyld_hdr()
: _dyld_get_image_header(data_.current_image);
if (!hdr) continue;
if (data_.current_load_cmd_count < 0) {
// Set up for this image;
data_.current_load_cmd_count = hdr->ncmds;
data_.current_magic = hdr->magic;
data_.current_filetype = hdr->filetype;
data_.current_arch = ModuleArchFromCpuType(hdr->cputype, hdr->cpusubtype);
switch (data_.current_magic) {
#ifdef MH_MAGIC_64
case MH_MAGIC_64: {
data_.current_load_cmd_addr =
(const char *)hdr + sizeof(mach_header_64);
break;
}
#endif
case MH_MAGIC: {
data_.current_load_cmd_addr = (const char *)hdr + sizeof(mach_header);
break;
}
default: {
continue;
}
}
FindUUID((const load_command *)data_.current_load_cmd_addr,
data_.current_uuid);
data_.current_instrumented = IsModuleInstrumented(
(const load_command *)data_.current_load_cmd_addr);
}
for (; data_.current_load_cmd_count >= 0; data_.current_load_cmd_count--) {
switch (data_.current_magic) {
// data_.current_magic may be only one of MH_MAGIC, MH_MAGIC_64.
#ifdef MH_MAGIC_64
case MH_MAGIC_64: {
if (NextSegmentLoad<LC_SEGMENT_64, struct segment_command_64>(
segment, segment->data_, &data_))
return true;
break;
}
#endif
case MH_MAGIC: {
if (NextSegmentLoad<LC_SEGMENT, struct segment_command>(
segment, segment->data_, &data_))
return true;
break;
}
}
}
// If we get here, no more load_cmd's in this image talk about
// segments. Go on to the next image.
}
return false;
}
void MemoryMappingLayout::DumpListOfModules(
InternalMmapVectorNoCtor<LoadedModule> *modules) {
Reset();
InternalMmapVector<char> module_name(kMaxPathLength);
MemoryMappedSegment segment(module_name.data(), module_name.size());
MemoryMappedSegmentData data;
segment.data_ = &data;
while (Next(&segment)) {
if (segment.filename[0] == '\0') continue;
LoadedModule *cur_module = nullptr;
if (!modules->empty() &&
0 == internal_strcmp(segment.filename, modules->back().full_name())) {
cur_module = &modules->back();
} else {
modules->push_back(LoadedModule());
cur_module = &modules->back();
cur_module->set(segment.filename, segment.start, segment.arch,
segment.uuid, data_.current_instrumented);
}
segment.AddAddressRanges(cur_module);
}
}
} // namespace __sanitizer
#endif // SANITIZER_APPLE
|