1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
|
//===- SimplifyIntrinsics.cpp -- replace intrinsics with simpler form -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// \file
/// This pass looks for suitable calls to runtime library for intrinsics that
/// can be simplified/specialized and replaces with a specialized function.
///
/// For example, SUM(arr) can be specialized as a simple function with one loop,
/// compared to the three arguments (plus file & line info) that the runtime
/// call has - when the argument is a 1D-array (multiple loops may be needed
// for higher dimension arrays, of course)
///
/// The general idea is that besides making the call simpler, it can also be
/// inlined by other passes that run after this pass, which further improves
/// performance, particularly when the work done in the function is trivial
/// and small in size.
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Support/FIRContext.h"
#include "flang/Optimizer/Transforms/Passes.h"
#include "flang/Runtime/entry-names.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
namespace fir {
#define GEN_PASS_DEF_SIMPLIFYINTRINSICS
#include "flang/Optimizer/Transforms/Passes.h.inc"
} // namespace fir
#define DEBUG_TYPE "flang-simplify-intrinsics"
namespace {
class SimplifyIntrinsicsPass
: public fir::impl::SimplifyIntrinsicsBase<SimplifyIntrinsicsPass> {
using FunctionTypeGeneratorTy =
llvm::function_ref<mlir::FunctionType(fir::FirOpBuilder &)>;
using FunctionBodyGeneratorTy =
llvm::function_ref<void(fir::FirOpBuilder &, mlir::func::FuncOp &)>;
using GenReductionBodyTy = llvm::function_ref<void(
fir::FirOpBuilder &builder, mlir::func::FuncOp &funcOp, unsigned rank)>;
public:
/// Generate a new function implementing a simplified version
/// of a Fortran runtime function defined by \p basename name.
/// \p typeGenerator is a callback that generates the new function's type.
/// \p bodyGenerator is a callback that generates the new function's body.
/// The new function is created in the \p builder's Module.
mlir::func::FuncOp getOrCreateFunction(fir::FirOpBuilder &builder,
const mlir::StringRef &basename,
FunctionTypeGeneratorTy typeGenerator,
FunctionBodyGeneratorTy bodyGenerator);
void runOnOperation() override;
void getDependentDialects(mlir::DialectRegistry ®istry) const override;
private:
/// Helper function to replace a reduction type of call with its
/// simplified form. The actual function is generated using a callback
/// function.
/// \p call is the call to be replaced
/// \p kindMap is used to create FIROpBuilder
/// \p genBodyFunc is the callback that builds the replacement function
void simplifyReduction(fir::CallOp call, const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc);
};
} // namespace
/// Create FirOpBuilder with the provided \p op insertion point
/// and \p kindMap additionally inheriting FastMathFlags from \p op.
static fir::FirOpBuilder
getSimplificationBuilder(mlir::Operation *op, const fir::KindMapping &kindMap) {
fir::FirOpBuilder builder{op, kindMap};
auto fmi = mlir::dyn_cast<mlir::arith::ArithFastMathInterface>(*op);
if (!fmi)
return builder;
// Regardless of what default FastMathFlags are used by FirOpBuilder,
// override them with FastMathFlags attached to the operation.
builder.setFastMathFlags(fmi.getFastMathFlagsAttr().getValue());
return builder;
}
/// Stringify FastMathFlags set for the given \p builder in a way
/// that the string may be used for mangling a function name.
/// If FastMathFlags are set to 'none', then the result is an empty
/// string.
static std::string getFastMathFlagsString(const fir::FirOpBuilder &builder) {
mlir::arith::FastMathFlags flags = builder.getFastMathFlags();
if (flags == mlir::arith::FastMathFlags::none)
return {};
std::string fmfString{mlir::arith::stringifyFastMathFlags(flags)};
std::replace(fmfString.begin(), fmfString.end(), ',', '_');
return fmfString;
}
/// Generate function type for the simplified version of RTNAME(Sum) and
/// similar functions with a fir.box<none> type returning \p elementType.
static mlir::FunctionType genNoneBoxType(fir::FirOpBuilder &builder,
const mlir::Type &elementType) {
mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
return mlir::FunctionType::get(builder.getContext(), {boxType},
{elementType});
}
using BodyOpGeneratorTy = llvm::function_ref<mlir::Value(
fir::FirOpBuilder &, mlir::Location, const mlir::Type &, mlir::Value,
mlir::Value)>;
using InitValGeneratorTy = llvm::function_ref<mlir::Value(
fir::FirOpBuilder &, mlir::Location, const mlir::Type &)>;
/// Generate the reduction loop into \p funcOp.
///
/// \p initVal is a function, called to get the initial value for
/// the reduction value
/// \p genBody is called to fill in the actual reduciton operation
/// for example add for SUM, MAX for MAXVAL, etc.
/// \p rank is the rank of the input argument.
static void genReductionLoop(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp,
InitValGeneratorTy initVal,
BodyOpGeneratorTy genBody, unsigned rank) {
auto loc = mlir::UnknownLoc::get(builder.getContext());
mlir::Type elementType = funcOp.getResultTypes()[0];
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
mlir::IndexType idxTy = builder.getIndexType();
mlir::Block::BlockArgListType args = funcOp.front().getArguments();
mlir::Value arg = args[0];
mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
fir::SequenceType::Shape flatShape(rank,
fir::SequenceType::getUnknownExtent());
mlir::Type arrTy = fir::SequenceType::get(flatShape, elementType);
mlir::Type boxArrTy = fir::BoxType::get(arrTy);
mlir::Value array = builder.create<fir::ConvertOp>(loc, boxArrTy, arg);
mlir::Value init = initVal(builder, loc, elementType);
llvm::SmallVector<mlir::Value, 15> bounds;
assert(rank > 0 && "rank cannot be zero");
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
// Compute all the upper bounds before the loop nest.
// It is not strictly necessary for performance, since the loop nest
// does not have any store operations and any LICM optimization
// should be able to optimize the redundancy.
for (unsigned i = 0; i < rank; ++i) {
mlir::Value dimIdx = builder.createIntegerConstant(loc, idxTy, i);
auto dims =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array, dimIdx);
mlir::Value len = dims.getResult(1);
// We use C indexing here, so len-1 as loopcount
mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
bounds.push_back(loopCount);
}
// Create a loop nest consisting of DoLoopOp operations.
// Collect the loops' induction variables into indices array,
// which will be used in the innermost loop to load the input
// array's element.
// The loops are generated such that the innermost loop processes
// the 0 dimension.
llvm::SmallVector<mlir::Value, 15> indices;
for (unsigned i = rank; 0 < i; --i) {
mlir::Value step = one;
mlir::Value loopCount = bounds[i - 1];
auto loop = builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step,
/*unordered=*/false,
/*finalCountValue=*/false, init);
init = loop.getRegionIterArgs()[0];
indices.push_back(loop.getInductionVar());
// Set insertion point to the loop body so that the next loop
// is inserted inside the current one.
builder.setInsertionPointToStart(loop.getBody());
}
// Reverse the indices such that they are ordered as:
// <dim-0-idx, dim-1-idx, ...>
std::reverse(indices.begin(), indices.end());
// We are in the innermost loop: generate the reduction body.
mlir::Type eleRefTy = builder.getRefType(elementType);
mlir::Value addr =
builder.create<fir::CoordinateOp>(loc, eleRefTy, array, indices);
mlir::Value elem = builder.create<fir::LoadOp>(loc, addr);
mlir::Value reductionVal = genBody(builder, loc, elementType, elem, init);
// Unwind the loop nest and insert ResultOp on each level
// to return the updated value of the reduction to the enclosing
// loops.
for (unsigned i = 0; i < rank; ++i) {
auto result = builder.create<fir::ResultOp>(loc, reductionVal);
// Proceed to the outer loop.
auto loop = mlir::cast<fir::DoLoopOp>(result->getParentOp());
reductionVal = loop.getResult(0);
// Set insertion point after the loop operation that we have
// just processed.
builder.setInsertionPointAfter(loop.getOperation());
}
// End of loop nest. The insertion point is after the outermost loop.
// Return the reduction value from the function.
builder.create<mlir::func::ReturnOp>(loc, reductionVal);
}
/// Generate function body of the simplified version of RTNAME(Sum)
/// with signature provided by \p funcOp. The caller is responsible
/// for saving/restoring the original insertion point of \p builder.
/// \p funcOp is expected to be empty on entry to this function.
/// \p rank specifies the rank of the input argument.
static void genRuntimeSumBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank) {
// function RTNAME(Sum)<T>x<rank>_simplified(arr)
// T, dimension(:) :: arr
// T sum = 0
// integer iter
// do iter = 0, extent(arr)
// sum = sum + arr[iter]
// end do
// RTNAME(Sum)<T>x<rank>_simplified = sum
// end function RTNAME(Sum)<T>x<rank>_simplified
auto zero = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
if (auto ty = elementType.dyn_cast<mlir::FloatType>()) {
const llvm::fltSemantics &sem = ty.getFloatSemantics();
return builder.createRealConstant(loc, elementType,
llvm::APFloat::getZero(sem));
}
return builder.createIntegerConstant(loc, elementType, 0);
};
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType, mlir::Value elem1,
mlir::Value elem2) -> mlir::Value {
if (elementType.isa<mlir::FloatType>())
return builder.create<mlir::arith::AddFOp>(loc, elem1, elem2);
if (elementType.isa<mlir::IntegerType>())
return builder.create<mlir::arith::AddIOp>(loc, elem1, elem2);
llvm_unreachable("unsupported type");
return {};
};
genReductionLoop(builder, funcOp, zero, genBodyOp, rank);
}
static void genRuntimeMaxvalBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp, unsigned rank) {
auto init = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType) {
if (auto ty = elementType.dyn_cast<mlir::FloatType>()) {
const llvm::fltSemantics &sem = ty.getFloatSemantics();
return builder.createRealConstant(
loc, elementType, llvm::APFloat::getLargest(sem, /*Negative=*/true));
}
unsigned bits = elementType.getIntOrFloatBitWidth();
int64_t minInt = llvm::APInt::getSignedMinValue(bits).getSExtValue();
return builder.createIntegerConstant(loc, elementType, minInt);
};
auto genBodyOp = [](fir::FirOpBuilder builder, mlir::Location loc,
mlir::Type elementType, mlir::Value elem1,
mlir::Value elem2) -> mlir::Value {
if (elementType.isa<mlir::FloatType>())
return builder.create<mlir::arith::MaxFOp>(loc, elem1, elem2);
if (elementType.isa<mlir::IntegerType>())
return builder.create<mlir::arith::MaxSIOp>(loc, elem1, elem2);
llvm_unreachable("unsupported type");
return {};
};
genReductionLoop(builder, funcOp, init, genBodyOp, rank);
}
/// Generate function type for the simplified version of RTNAME(DotProduct)
/// operating on the given \p elementType.
static mlir::FunctionType genRuntimeDotType(fir::FirOpBuilder &builder,
const mlir::Type &elementType) {
mlir::Type boxType = fir::BoxType::get(builder.getNoneType());
return mlir::FunctionType::get(builder.getContext(), {boxType, boxType},
{elementType});
}
/// Generate function body of the simplified version of RTNAME(DotProduct)
/// with signature provided by \p funcOp. The caller is responsible
/// for saving/restoring the original insertion point of \p builder.
/// \p funcOp is expected to be empty on entry to this function.
/// \p arg1ElementTy and \p arg2ElementTy specify elements types
/// of the underlying array objects - they are used to generate proper
/// element accesses.
static void genRuntimeDotBody(fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp,
mlir::Type arg1ElementTy,
mlir::Type arg2ElementTy) {
// function RTNAME(DotProduct)<T>_simplified(arr1, arr2)
// T, dimension(:) :: arr1, arr2
// T product = 0
// integer iter
// do iter = 0, extent(arr1)
// product = product + arr1[iter] * arr2[iter]
// end do
// RTNAME(ADotProduct)<T>_simplified = product
// end function RTNAME(DotProduct)<T>_simplified
auto loc = mlir::UnknownLoc::get(builder.getContext());
mlir::Type resultElementType = funcOp.getResultTypes()[0];
builder.setInsertionPointToEnd(funcOp.addEntryBlock());
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value zero =
resultElementType.isa<mlir::FloatType>()
? builder.createRealConstant(loc, resultElementType, 0.0)
: builder.createIntegerConstant(loc, resultElementType, 0);
mlir::Block::BlockArgListType args = funcOp.front().getArguments();
mlir::Value arg1 = args[0];
mlir::Value arg2 = args[1];
mlir::Value zeroIdx = builder.createIntegerConstant(loc, idxTy, 0);
fir::SequenceType::Shape flatShape = {fir::SequenceType::getUnknownExtent()};
mlir::Type arrTy1 = fir::SequenceType::get(flatShape, arg1ElementTy);
mlir::Type boxArrTy1 = fir::BoxType::get(arrTy1);
mlir::Value array1 = builder.create<fir::ConvertOp>(loc, boxArrTy1, arg1);
mlir::Type arrTy2 = fir::SequenceType::get(flatShape, arg2ElementTy);
mlir::Type boxArrTy2 = fir::BoxType::get(arrTy2);
mlir::Value array2 = builder.create<fir::ConvertOp>(loc, boxArrTy2, arg2);
// This version takes the loop trip count from the first argument.
// If the first argument's box has unknown (at compilation time)
// extent, then it may be better to take the extent from the second
// argument - so that after inlining the loop may be better optimized, e.g.
// fully unrolled. This requires generating two versions of the simplified
// function and some analysis at the call site to choose which version
// is more profitable to call.
// Note that we can assume that both arguments have the same extent.
auto dims =
builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy, array1, zeroIdx);
mlir::Value len = dims.getResult(1);
mlir::Value one = builder.createIntegerConstant(loc, idxTy, 1);
mlir::Value step = one;
// We use C indexing here, so len-1 as loopcount
mlir::Value loopCount = builder.create<mlir::arith::SubIOp>(loc, len, one);
auto loop = builder.create<fir::DoLoopOp>(loc, zeroIdx, loopCount, step,
/*unordered=*/false,
/*finalCountValue=*/false, zero);
mlir::Value sumVal = loop.getRegionIterArgs()[0];
// Begin loop code
mlir::OpBuilder::InsertPoint loopEndPt = builder.saveInsertionPoint();
builder.setInsertionPointToStart(loop.getBody());
mlir::Type eleRef1Ty = builder.getRefType(arg1ElementTy);
mlir::Value index = loop.getInductionVar();
mlir::Value addr1 =
builder.create<fir::CoordinateOp>(loc, eleRef1Ty, array1, index);
mlir::Value elem1 = builder.create<fir::LoadOp>(loc, addr1);
// Convert to the result type.
elem1 = builder.create<fir::ConvertOp>(loc, resultElementType, elem1);
mlir::Type eleRef2Ty = builder.getRefType(arg2ElementTy);
mlir::Value addr2 =
builder.create<fir::CoordinateOp>(loc, eleRef2Ty, array2, index);
mlir::Value elem2 = builder.create<fir::LoadOp>(loc, addr2);
// Convert to the result type.
elem2 = builder.create<fir::ConvertOp>(loc, resultElementType, elem2);
if (resultElementType.isa<mlir::FloatType>())
sumVal = builder.create<mlir::arith::AddFOp>(
loc, builder.create<mlir::arith::MulFOp>(loc, elem1, elem2), sumVal);
else if (resultElementType.isa<mlir::IntegerType>())
sumVal = builder.create<mlir::arith::AddIOp>(
loc, builder.create<mlir::arith::MulIOp>(loc, elem1, elem2), sumVal);
else
llvm_unreachable("unsupported type");
builder.create<fir::ResultOp>(loc, sumVal);
// End of loop.
builder.restoreInsertionPoint(loopEndPt);
mlir::Value resultVal = loop.getResult(0);
builder.create<mlir::func::ReturnOp>(loc, resultVal);
}
mlir::func::FuncOp SimplifyIntrinsicsPass::getOrCreateFunction(
fir::FirOpBuilder &builder, const mlir::StringRef &baseName,
FunctionTypeGeneratorTy typeGenerator,
FunctionBodyGeneratorTy bodyGenerator) {
// WARNING: if the function generated here changes its signature
// or behavior (the body code), we should probably embed some
// versioning information into its name, otherwise libraries
// statically linked with older versions of Flang may stop
// working with object files created with newer Flang.
// We can also avoid this by using internal linkage, but
// this may increase the size of final executable/shared library.
std::string replacementName = mlir::Twine{baseName, "_simplified"}.str();
mlir::ModuleOp module = builder.getModule();
// If we already have a function, just return it.
mlir::func::FuncOp newFunc =
fir::FirOpBuilder::getNamedFunction(module, replacementName);
mlir::FunctionType fType = typeGenerator(builder);
if (newFunc) {
assert(newFunc.getFunctionType() == fType &&
"type mismatch for simplified function");
return newFunc;
}
// Need to build the function!
auto loc = mlir::UnknownLoc::get(builder.getContext());
newFunc =
fir::FirOpBuilder::createFunction(loc, module, replacementName, fType);
auto inlineLinkage = mlir::LLVM::linkage::Linkage::LinkonceODR;
auto linkage =
mlir::LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage);
newFunc->setAttr("llvm.linkage", linkage);
// Save the position of the original call.
mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
bodyGenerator(builder, newFunc);
// Now back to where we were adding code earlier...
builder.restoreInsertionPoint(insertPt);
return newFunc;
}
fir::ConvertOp expectConvertOp(mlir::Value val) {
if (fir::ConvertOp op =
mlir::dyn_cast_or_null<fir::ConvertOp>(val.getDefiningOp()))
return op;
LLVM_DEBUG(llvm::dbgs() << "Didn't find expected fir::ConvertOp\n");
return nullptr;
}
static bool isOperandAbsent(mlir::Value val) {
if (auto op = expectConvertOp(val)) {
assert(op->getOperands().size() != 0);
return mlir::isa_and_nonnull<fir::AbsentOp>(
op->getOperand(0).getDefiningOp());
}
return false;
}
static bool isZero(mlir::Value val) {
if (auto op = expectConvertOp(val)) {
assert(op->getOperands().size() != 0);
if (mlir::Operation *defOp = op->getOperand(0).getDefiningOp())
return mlir::matchPattern(defOp, mlir::m_Zero());
}
return false;
}
static mlir::Value findBoxDef(mlir::Value val) {
if (auto op = expectConvertOp(val)) {
assert(op->getOperands().size() != 0);
if (auto box = mlir::dyn_cast_or_null<fir::EmboxOp>(
op->getOperand(0).getDefiningOp()))
return box.getResult();
if (auto box = mlir::dyn_cast_or_null<fir::ReboxOp>(
op->getOperand(0).getDefiningOp()))
return box.getResult();
}
return {};
}
static unsigned getDimCount(mlir::Value val) {
// In order to find the dimensions count, we look for EmboxOp/ReboxOp
// and take the count from its *result* type. Note that in case
// of sliced emboxing the operand and the result of EmboxOp/ReboxOp
// have different types.
// Actually, we can take the box type from the operand of
// the first ConvertOp that has non-opaque box type that we meet
// going through the ConvertOp chain.
if (mlir::Value emboxVal = findBoxDef(val))
if (auto boxTy = emboxVal.getType().dyn_cast<fir::BoxType>())
if (auto seqTy = boxTy.getEleTy().dyn_cast<fir::SequenceType>())
return seqTy.getDimension();
return 0;
}
/// Given the call operation's box argument \p val, discover
/// the element type of the underlying array object.
/// \returns the element type or std::nullopt if the type cannot
/// be reliably found.
/// We expect that the argument is a result of fir.convert
/// with the destination type of !fir.box<none>.
static std::optional<mlir::Type> getArgElementType(mlir::Value val) {
mlir::Operation *defOp;
do {
defOp = val.getDefiningOp();
// Analyze only sequences of convert operations.
if (!mlir::isa<fir::ConvertOp>(defOp))
return std::nullopt;
val = defOp->getOperand(0);
// The convert operation is expected to convert from one
// box type to another box type.
auto boxType = val.getType().cast<fir::BoxType>();
auto elementType = fir::unwrapSeqOrBoxedSeqType(boxType);
if (!elementType.isa<mlir::NoneType>())
return elementType;
} while (true);
}
void SimplifyIntrinsicsPass::simplifyReduction(fir::CallOp call,
const fir::KindMapping &kindMap,
GenReductionBodyTy genBodyFunc) {
mlir::SymbolRefAttr callee = call.getCalleeAttr();
mlir::Operation::operand_range args = call.getArgs();
// args[1] and args[2] are source filename and line number, ignored.
const mlir::Value &dim = args[3];
const mlir::Value &mask = args[4];
// dim is zero when it is absent, which is an implementation
// detail in the runtime library.
bool dimAndMaskAbsent = isZero(dim) && isOperandAbsent(mask);
unsigned rank = getDimCount(args[0]);
if (dimAndMaskAbsent && rank > 0) {
mlir::Location loc = call.getLoc();
fir::FirOpBuilder builder{getSimplificationBuilder(call, kindMap)};
std::string fmfString{getFastMathFlagsString(builder)};
// Support only floating point and integer results now.
mlir::Type resultType = call.getResult(0).getType();
if (!resultType.isa<mlir::FloatType>() &&
!resultType.isa<mlir::IntegerType>())
return;
auto argType = getArgElementType(args[0]);
if (!argType)
return;
assert(*argType == resultType &&
"Argument/result types mismatch in reduction");
auto typeGenerator = [&resultType](fir::FirOpBuilder &builder) {
return genNoneBoxType(builder, resultType);
};
auto bodyGenerator = [&rank, &genBodyFunc](fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp) {
genBodyFunc(builder, funcOp, rank);
};
// Mangle the function name with the rank value as "x<rank>".
std::string funcName =
(mlir::Twine{callee.getLeafReference().getValue(), "x"} +
mlir::Twine{rank} +
// We must mangle the generated function name with FastMathFlags
// value.
(fmfString.empty() ? mlir::Twine{} : mlir::Twine{"_", fmfString}))
.str();
mlir::func::FuncOp newFunc =
getOrCreateFunction(builder, funcName, typeGenerator, bodyGenerator);
auto newCall =
builder.create<fir::CallOp>(loc, newFunc, mlir::ValueRange{args[0]});
call->replaceAllUsesWith(newCall.getResults());
call->dropAllReferences();
call->erase();
}
}
void SimplifyIntrinsicsPass::runOnOperation() {
LLVM_DEBUG(llvm::dbgs() << "=== Begin " DEBUG_TYPE " ===\n");
mlir::ModuleOp module = getOperation();
fir::KindMapping kindMap = fir::getKindMapping(module);
module.walk([&](mlir::Operation *op) {
if (auto call = mlir::dyn_cast<fir::CallOp>(op)) {
if (mlir::SymbolRefAttr callee = call.getCalleeAttr()) {
mlir::StringRef funcName = callee.getLeafReference().getValue();
// Replace call to runtime function for SUM when it has single
// argument (no dim or mask argument) for 1D arrays with either
// Integer4 or Real8 types. Other forms are ignored.
// The new function is added to the module.
//
// Prototype for runtime call (from sum.cpp):
// RTNAME(Sum<T>)(const Descriptor &x, const char *source, int line,
// int dim, const Descriptor *mask)
//
if (funcName.startswith(RTNAME_STRING(Sum))) {
simplifyReduction(call, kindMap, genRuntimeSumBody);
return;
}
if (funcName.startswith(RTNAME_STRING(DotProduct))) {
LLVM_DEBUG(llvm::dbgs() << "Handling " << funcName << "\n");
LLVM_DEBUG(llvm::dbgs() << "Call operation:\n"; op->dump();
llvm::dbgs() << "\n");
mlir::Operation::operand_range args = call.getArgs();
const mlir::Value &v1 = args[0];
const mlir::Value &v2 = args[1];
mlir::Location loc = call.getLoc();
fir::FirOpBuilder builder{getSimplificationBuilder(op, kindMap)};
// Stringize the builder's FastMathFlags flags for mangling
// the generated function name.
std::string fmfString{getFastMathFlagsString(builder)};
mlir::Type type = call.getResult(0).getType();
if (!type.isa<mlir::FloatType>() && !type.isa<mlir::IntegerType>())
return;
// Try to find the element types of the boxed arguments.
auto arg1Type = getArgElementType(v1);
auto arg2Type = getArgElementType(v2);
if (!arg1Type || !arg2Type)
return;
// Support only floating point and integer arguments
// now (e.g. logical is skipped here).
if (!arg1Type->isa<mlir::FloatType>() &&
!arg1Type->isa<mlir::IntegerType>())
return;
if (!arg2Type->isa<mlir::FloatType>() &&
!arg2Type->isa<mlir::IntegerType>())
return;
auto typeGenerator = [&type](fir::FirOpBuilder &builder) {
return genRuntimeDotType(builder, type);
};
auto bodyGenerator = [&arg1Type,
&arg2Type](fir::FirOpBuilder &builder,
mlir::func::FuncOp &funcOp) {
genRuntimeDotBody(builder, funcOp, *arg1Type, *arg2Type);
};
// Suffix the function name with the element types
// of the arguments.
std::string typedFuncName(funcName);
llvm::raw_string_ostream nameOS(typedFuncName);
// We must mangle the generated function name with FastMathFlags
// value.
if (!fmfString.empty())
nameOS << '_' << fmfString;
nameOS << '_';
arg1Type->print(nameOS);
nameOS << '_';
arg2Type->print(nameOS);
mlir::func::FuncOp newFunc = getOrCreateFunction(
builder, typedFuncName, typeGenerator, bodyGenerator);
auto newCall = builder.create<fir::CallOp>(loc, newFunc,
mlir::ValueRange{v1, v2});
call->replaceAllUsesWith(newCall.getResults());
call->dropAllReferences();
call->erase();
LLVM_DEBUG(llvm::dbgs() << "Replaced with:\n"; newCall.dump();
llvm::dbgs() << "\n");
return;
}
if (funcName.startswith(RTNAME_STRING(Maxval))) {
simplifyReduction(call, kindMap, genRuntimeMaxvalBody);
return;
}
}
}
});
LLVM_DEBUG(llvm::dbgs() << "=== End " DEBUG_TYPE " ===\n");
}
void SimplifyIntrinsicsPass::getDependentDialects(
mlir::DialectRegistry ®istry) const {
// LLVM::LinkageAttr creation requires that LLVM dialect is loaded.
registry.insert<mlir::LLVM::LLVMDialect>();
}
std::unique_ptr<mlir::Pass> fir::createSimplifyIntrinsicsPass() {
return std::make_unique<SimplifyIntrinsicsPass>();
}
|