1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
.. _log_algorithm:
========================
Log/Log10/Log2 Algorithm
========================
.. default-role:: math
In this short note, we will discuss in detail about the computation of
:math:`\log(x)` function, with double precision inputs, in particular, the range
reduction steps and error analysis. The algorithm is broken down into 2 main
phases as follow:
1. Fast phase:
a. Range reduction
b. Polynomial approximation
c. Ziv's test
2. Accurate phase (if Ziv's test failed):
a. Further range reduction
b. Polynomial approximation
Fast phase
==========
Range reduction
---------------
Let `x = 2^{e_x} (1 + m_x)` be a normalized double precision number, in which
`-1074 \leq e_x \leq 1022` and `0 \leq m_x < 1` such that
`2^{52} m_x \in \mathbb{Z}`.
Then from the properties of logarithm:
.. math::
\log(x) &= \log\left( 2^{e_x} (1 + m_x) \right) \\
&= \log\left( 2^{e_x} \right) + \log(1 + m_x) \\
&= e_x \log(2) + \log(1 + m_x)
the computation of `\log(x)` can be reduced to:
1. compute the product of `e_x` and `\log(2)`,
2. compute `\log(1 + m_x)` for `0 \leq m_x < 1`,
3. add step 1 and 2.
To compute `\log(1 + m_x)` in step 2, we can reduce the range further by finding
`r > 0` such that:
.. math::
| r(1 + m_x) - 1 | < C \quad \quad \text{(R1)}
for small `0 < C < 1`. Then if we let `u = r(1 + m_x) - 1`, `|u| < C`:
.. math::
\log(1 + m_x) &= \log \left( \frac{r (1 + m_x)}{r} \right) \\
&= \log(r (1 + m_x) ) - \log(r) \\
&= \log(1 + u) - \log(r)
and step 2 can be computed with:
a. extract `r` and `-\log(r)` from look-up tables,
b. compute the reduced argument `u = r(1 + m_x) - 1`,
c. compute `\log(1 + u)` by polynomial approximation or further range reduction,
d. add step a and step c results.
How to derive `r`
-----------------
For an efficient implementation, we would like to use the first `M` signficicant
bits of `m_x` to look up for `r`. In particular, we would like to find a value
of `r` that works for all `m_x` satisfying:
.. math::
k 2^{-M} \leq m_x < (k + 1) 2^{-M} \quad \text{for some} \quad
k = 0..2^{M} - 1. \quad\quad \text{(M1)}
Let `r = 1 + s`, then `u` can be expressed in terms of `s` as:
.. math::
u &= r(1 + m_x) - 1 \\
&= (1 + s)(1 + m_x) - 1 \\
&= s m_x + s + m_x &\quad\quad \text{(U1)} \\
&= s (1 + m_x) + m_x \\
&= m_x (1 + s) + s.
From the condition `\text{(R1)}`, `s` is bounded by:
.. math::
\frac{-C - m_x}{1 + m_x} < s < \frac{C - m_x}{1 + m_x} \quad\quad \text{(S1)}.
Since our reduction constant `s` must work for all `m_x` in the interval
`I = \{ v: k 2^{-M} \leq v < (k + 1) 2^{-M} \}`, `s` is bounded by:
.. math::
\sup_{v \in I} \frac{-C - v}{1 + v} < s < \inf_{v \in I} \frac{C - v}{1 + v}
For a fixed constant `|c| < 1`, let `f(v) = \frac{c - v}{1 + v}`, then its
derivative is:
.. math::
f'(v) = \frac{(-1)(1 + v) - (1)(c - v)}{(1 + v)^2} = \frac{-1 - c}{(1 + v)^2}.
Since `|c| < 1`, `f'(v) < 0` for all `v \neq -1`, so:
.. math::
\sup_{v \in I} f(v) &= f \left( \inf\{ v: v \in I \} \right)
= f \left( k 2^{-M} \right) \\
\inf_{v \in I} f(v) &= f \left( \sup\{ v: v \in I \} \right)
= f \left( (k + 1) 2^{-M} \right)
Hence we have the following bound on `s`:
.. math::
\frac{-C - k 2^{-M}}{1 + k 2^{-M}} < s \leq
\frac{C - (k + 1) 2^{-M}}{1 + (k + 1) 2^{-M}}. \quad\quad \text{(S2)}
In order for `s` to exist, we need that:
.. math::
\frac{C - (k + 1) 2^{-M}}{1 + (k + 1) 2^{-M}} >
\frac{-C - k 2^{-M}}{1 + k 2^{-M}}
which is equivalent to:
.. math::
\quad\quad 2C - 2^{-M} + (2k + 1) 2^{-M} C > 0
\iff C > \frac{2^{-M - 1}}{1 + (2k + 1) 2^{-M - 1}} \quad\quad \text{(C1)}.
Consider the case `C = 2^{-N}`. Since `0 \leq k \leq 2^M - 1,` the right hand
side of `\text{(C1)}` is bounded by:
.. math::
2^{-M - 1} > \frac{2^{-M - 1}}{1 + (2k + 1) 2^{-M - 1}} \geq
\frac{2^{-M - 1}}{1 + (2^{M + 1} - 1) 2^{-M - 1}} > 2^{-M - 2}.
Hence, from `\text{(C1)}`, being an exact power of 2, `C = 2^{-N}` is bounded below
by:
.. math::
C = 2^{-N} \geq 2^{-M - 1}.
To make the range reduction efficient, we will want to minimize `C` (maximize
`N`) while keeping the required precision of `s`(`r`) as low as possible. And
for that, we will consider the following two cases: `N = M + 1` and `N = M`.
Case 1 - `N = M + 1`
~~~~~~~~~~~~~~~~~~~~
When `N = M + 1`, `\text{(S2)}` becomes:
.. math::
\frac{-2^{-M - 1} - k 2^{-M}}{1 + k 2^{-M}} < s <
\frac{2^{-M - 1} - (k + 1) 2^{-M}}{1 + (k + 1) 2^{-M}}.
\quad\quad \text{(S2')}
This is an interval of length:
.. math::
l &= \frac{2^{-M - 1} - (k + 1) 2^{-M}}{1 + (k + 1) 2^{-M}} -
\frac{-2^{-M - 1} - k 2^{-M}}{1 + k 2^{-M}} \\
&= \frac{(2k + 1)2^{-2M - 1}}{(1 + k 2^{-M})(1 + (k + 1)2^{-M})}
\quad\quad \text{(L1)}
As a function of `k`, the length `l` has its derivative with respect to `k`:
.. math::
\frac{dl}{dk} =
\frac{2^{2M + 1} - 2k(k + 1) - 1}
{2^{4M}(1 + k 2^{-M})^2 (1 + (k + 1) 2^{-M})^2}
which is always positive for `0 \leq k \leq 2^M - 1`. So for all
`0 < k < 2^{-M}` (`k = 0` will be treated differently in edge cases), and for
`M > 2`, `l` is bounded below by:
.. math::
l > 2^{-2M}.
It implies that we can always find `s` with `\operatorname{ulp}(s) = 2^{-2M}`.
And from `\text{(U1)}`, `u = s(1 + m_x) + m_x`, its `ulp` is:
.. math::
\operatorname{ulp}(u) &= \operatorname{ulp}(s) \cdot \operatorname{ulp}(m_x) \\
&= 2^{-2M} \operatorname{ulp}(m_x).
Since:
.. math::
|u| < C = 2^{-N} = 2^{-M - 1},
Its required precision is:
.. math::
\operatorname{prec}(u) &= \log_2(2^{-M-1} / \operatorname{ulp}(u)) \\
&= \log_2(2^{M - 1} / \operatorname{ulp}(m_x)) \\
&= M - 1 - \log_2(\operatorname{ulp}(m_x)).
This means that in this case, we cannot restrict `u` to be exactly representable
in double precision for double precision input `x` with `M > 2`. Nonetheless,
for a reasonable value of `M`, we can have `u` exactly representable in double
precision for single precision input `x` (`\operatorname{ulp}(m_x) = 2^{-23}`)
such that `|u| < 2^{-M - 1}` using a look-up table of size `2^M`.
A particular formula for `s` can be derived from `\text{(S2')}` by the midpoint
formula:
.. math::
s &= 2^{-2M} \operatorname{round}\left( 2^{2M} \cdot \operatorname{midpoint}
\left(-\frac{-2^{-M - 1} - k2^{-M}}{1 + k 2^{-M}},
\frac{2^{-M-1} - (k + 1)2^{-M}}{1 + (k + 1) 2^{-M}}\right) \right) \\
&= 2^{-2M} \operatorname{round}\left( 2^{2M} \cdot \frac{1}{2} \left(
\frac{-2^{-M - 1} - k2^{-M}}{1 + k 2^{-M}} +
\frac{2^{-M - 1} + (k + 1)2^{-M}}{1 + (k + 1) 2^{-M}}
\right) \right) \\
&= 2^{-2M} \operatorname{round}\left( \frac{
- \left(k + \frac{1}{2} \right) \left(2^M - k - \frac{1}{2} \right) }
{(1 + k 2^{-N})(1 + (k + 1) 2^{-N})} \right) \\
&= - 2^{-2M} \operatorname{round}\left( \frac{
\left(k + \frac{1}{2} \right) \left(2^M - k - \frac{1}{2} \right) }
{(1 + k 2^{-N})(1 + (k + 1) 2^{-N})} \right) \quad\quad \text{(S3)}
The corresponding range and formula for `r = 1 + s` are:
.. math::
\frac{1 - 2^{-M - 1}}{1 + k 2^{-M}} < r \leq
\frac{1 + 2^{-M - 1}}{1 + (k + 1) 2^{-M}}
.. math::
r &= 2^{-2M} \operatorname{round}\left( 2^{2M} \cdot
\operatorname{midpoint}\left( \frac{1 - 2^{-M - 1}}{1 + k 2^{-M}},
\frac{1 + 2^{-M - 1}}{1 + (k + 1) 2^{-M}}\right) \right) \\
&= 2^{-2M} \operatorname{round}\left( 2^{2M} \cdot \frac{1}{2} \left(
\frac{1 + 2^{-M-1}}{1 + (k + 1) 2^{-M}} + \frac{1 - 2^{-M-1}}{1 + k 2^{-M}}
\right) \right) \\
&= 2^{-2M} \operatorname{round}\left( 2^{2M} \cdot \frac{
1 + \left(k + \frac{1}{2} \right) 2^{-M} - 2^{-2M-2} }{(1 + k 2^{-M})
(1 + (k + 1) 2^{-M})} \right)
Case 1 - `N = M`
~~~~~~~~~~~~~~~~
When `N = M`, `\text{(S2)}` becomes:
.. math::
\frac{-(k + 1)2^{-M}}{1 + k 2^{-M}} < s < \frac{-k 2^{-M}}{1 + (k + 1) 2^{-M}}
\quad\quad \text{(S2")}
This is an interval of length:
.. math::
l &= \frac{- k 2^{-M}}{1 + (k + 1) 2^{-M}} -
\frac{- (k + 1) 2^{-M}}{1 + k 2^{-M}} \\
&= \frac{2^{-M} (1 + (2k + 1) 2^{-M})}{(1 + k 2^{-M})(1 + (k + 1)2^{-M})}
\quad\quad \text{(L1')}
As a function of `k`, its derivative with respect to `k`:
.. math::
\frac{dl}{dk} =
-\frac{2^{-2M}(k(k + 1)2^{-M + 1} + 2^{-M} + 2k + 1)}
{(1 + k 2^{-M})^2 (1 + (k + 1) 2^{-M})^2}
which is always negative for `0 \leq k \leq 2^M - 1`. So for `M > 1`, `l` is
bounded below by:
.. math::
l > \frac{2^{-M - 1} (3 - 2^{-M})}{2 - 2^{-M}} > 2^{-M - 1}.
It implies that we can always find `s` with `\operatorname{ulp}(s) = 2^{-M-1}`.
And from `\text{(U1)}`, `u = s(1 + m_x) + m_x`, its `ulp` is:
.. math::
\operatorname{ulp}(u) &= \operatorname{ulp}(s) \cdot \operatorname{ulp}(m_x) \\
&= 2^{-M - 1} \operatorname{ulp}(m_x).
Since:
.. math::
|u| < C = 2^{-N} = 2^{-M},
Its required precision is:
.. math::
\operatorname{prec}(u) &= \log_2(2^{-M} / \operatorname{ulp}(u)) \\
&= \log_2(2 / \operatorname{ulp}(m_x)) \\
&= 1 - \log_2(\operatorname{ulp}(m_x)).
Hence, for double precision `x`, `\operatorname{ulp}(m_x) = 2^{-52}`, and the
precision needed for `u` is `\operatorname{prec}(u) = 53`, i.e., `u` can be
exactly representable in double precision. And in this case, `s` can be
derived from `\text{(S2")}` by the midpoint formula:
.. math::
s &= 2^{-M - 1} \operatorname{round}\left( 2^{M + 1} \cdot
\operatorname{midpoint} \left(-\frac{-(k + 1)2^{-M}}{1 + k 2^{-M}},
\frac{-k2^{-M}}{1 + (k + 1) 2^{-M}}\right) \right) \\
&= 2^{-M - 1} \operatorname{round}\left( 2^{M + 1} \cdot \frac{1}{2} \left(
\frac{-(k + 1)2^{-M}}{1 + k 2^{-M}} + \frac{-k2^{-M}}{1 + (k + 1) 2^{-M}}
\right) \right) \\
&= -2^{-M - 1} \operatorname{round}\left( \frac{
(2k + 1) + (2k^2 + 2k + 1) 2^{-M} }
{(1 + k 2^{-N})(1 + (k + 1) 2^{-N})} \right) \quad\quad \text{(S3')}
The corresponding range and formula for `r = 1 + s` are:
.. math::
\frac{1 - 2^{-M}}{1 + k 2^{-M}} < r \leq \frac{1 + 2^{-M}}{1 + (k + 1) 2^{-M}}
.. math::
r &= 2^{-M-1} \operatorname{round}\left( 2^{M + 1} \cdot
\operatorname{midpoint}\left( \frac{1 - 2^{-M}}{1 + k 2^{-M}},
\frac{1 + 2^{-M}}{1 + (k + 1) 2^{-M}}\right) \right) \\
&= 2^{-M-1} \operatorname{round}\left( 2^{M + 1} \cdot \frac{1}{2} \left(
\frac{1 + 2^{-M}}{1 + (k + 1) 2^{-M}} + \frac{1 - 2^{-M}}{1 + k 2^{-M}}
\right) \right) \\
&= 2^{-M - 1} \operatorname{round}\left( 2^{M + 1} \cdot \frac{
1 + \left(k + \frac{1}{2} \right) 2^{-M} - 2^{-2M-1} }{(1 + k 2^{-M})
(1 + (k + 1) 2^{-M})} \right)
Edge cases
----------
1. When `k = 0`, notice that:
.. math::
0 = k 2^{-N} \leq m_x < (k + 1) 2^{-N} = 2^{-N} = C,
so we can simply choose `r = 1` so that `\log(r) = 0` is exact, then `u = m_x`.
This will help reduce the accumulated errors when `m_x` is close to 0 while
maintaining the range reduction output's requirements.
2. When `k = 2^{N} - 1`, `\text{(S2)}` becomes:
.. math::
-\frac{1}{2} - \frac{C - 2^{-M-1}}{2 - 2^{-M}} <> s \leq
-\frac{1}{2} + \frac{C}{2}.
so when `C > 2^{-M - 1}` is a power of 2, we can always choose:
.. math::
s = -\frac{1}{2}, \quad \text{i.e.} \quad r = \frac{1}{2}.
This reduction works well to avoid catastropic cancellation happening when
`e_x = -1`.
This also works when `C = 2^{-M - 1}` if we relax the condition on `u` to
`|u| \leq C = 2^{-M-1}`.
Intermediate precision, and Ziv's test
--------------------------------------
In the fast phase, we want extra precision while performant, so we use
double-double precision for most intermediate computation steps, and employ Ziv
test to see if the result is accurate or not. In our case, the Ziv's test can
be described as follow:
1. Let `re = re.hi + re.lo` be the double-double output of the fast phase
computation.
2. Let `err` be an estimated upper bound of the errors of `re`.
3. If `\circ(re.hi + (re.lo - err)) == \circ(re.hi + (r.lo + err))` then the
result is correctly rounded to double precision for the current rounding mode
`\circ`. Otherwise, the accurate phase with extra precision is needed.
For an easy and cheap estimation of the error bound `err`, since the range
reduction step described above is accurate, the errors of the result:
.. math::
\log(x) &= e_x \log(2) - \log(r) + \log(1 + u) \\
&\approx e_x \log(2) - \log(r) + u P(u)
come from 2 parts:
1. the look-up part: `e_x \log(2) - \log(r)`
2. the polynomial approximation part: `u P(u)`
The errors of the first part can be computed with a single `\operatorname{fma}`
operation:
.. math::
err_1 = \operatorname{fma}(e_x, err(\log(2)), err(\log(r))),
and then combining with the errors of the second part for another
`\operatorname{fma}` operation:
.. math::
err = \operatorname{fma}(u, err(P), err_1)
Accurate phase
==============
Extending range reduction
-------------------------
Since the output `u = r(1 + m_x) - 1` of the fast phase's range reduction
is computed exactly, we can apply further range reduction steps by
using the following formula:
.. math::
u_{i + 1} = r_i(1 + u_i) - 1 = u_i \cdot r_i + (r_i - 1),
where `|u_i| < 2^{-N_i}` and `u_0 = u` is representable in double precision.
Let `s_i = r_i - 1`, then we can rewrite it as:
.. math::
u_{i + 1} &= (1 + s_i)(1 + u_i) - 1 \\
&= s_i u_i + u_i + s_i \\
&= u_i (1 + s_i) + s_i
&= s_i (1 + u_i) + u_i.
Then the bound on `u_{i + 1}` is translated to `s_i` as:
.. math::
\frac{-2^{-N_{i + 1}} - u_i}{1 + u_i} < s_i < \frac{2^{-N_{i + 1}} - u_i}{1 + u_i}.
Let say we divide the interval `[0, 2^-{N_i})` into `2^{M_i}` subintervals
evenly and use the index `k` such that:
.. math::
k 2^{-N_i - M_i} \leq u_i < (k + 1) 2^{-N_i - M_i},
to look-up for the reduction constant `s_{i, k}`. In other word, `k` is given
by the formula:
.. math::
k = \left\lfloor 2^{N_i + M_i} u_i \right\rfloor
Notice that our reduction constant `s_{i, k}` must work for all `u_i` in the
interval `I = \{ v: k 2^{-N_i - M_i} \leq v < (k + 1) 2^{-N_i - M_i} \}`,
so it is bounded by:
.. math::
\sup_{v \in I} \frac{-2^{-N_{i + 1}} - v}{1 + v} < s_{i, k} < \inf_{v \in I} \frac{2^{-N_{i + 1}} - v}{1 + v}
For a fixed constant `|C| < 1`, let `f(v) = \frac{C - v}{1 + v}`, then its derivative
is:
.. math::
f'(v) = \frac{(-1)(1 + v) - (1)(C - v)}{(1 + v)^2} = \frac{-1 - C}{(1 + v)^2}.
Since `|C| < 1`, `f'(v) < 0` for all `v \neq -1`, so:
.. math::
\sup_{v \in I} f(v) &= f \left( \inf\{ v: v \in I \} \right)
= f \left( k 2^{-N_i - M_i} \right) \\
\inf_{v \in I} f(v) &= f \left( \sup\{ v: v \in I \} \right)
= f \left( (k + 1) 2^{-N_i - M_i} \right)
Hence we have the following bound on `s_{i, k}`:
.. math::
\frac{-2^{-N_{i + 1}} - k 2^{-N_i - M_i}}{1 + k 2^{-N_i - M_i}} < s_{i, k}
\leq \frac{2^{-N_{i + 1}} - (k + 1) 2^{-N_i - M_i}}{1 + (k + 1) 2^{-N_i - M_i}}
This interval is of length:
.. math::
l &= \frac{2^{-N_{i + 1}} - (k + 1) 2^{-N_i - M_i}}{1 + (k + 1) 2^{-N_i - M_i}} -
\frac{-2^{-N_{i + 1}} - k 2^{-N_i - M_i}}{1 + k 2^{-N_i - M_i}} \\
&= \frac{2^{-N_{i + 1} + 1} - 2^{-N_i - M_i} + (2k + 1) 2^{-N_{i + 1} - N_i - M_i}}
{(1 + k 2^{-N_i - M_i})(1 + (k + 1) 2^{-N_i -M_i})}
So in order to be able to find `s_{i, k}`, we need that:
.. math::
2^{-N_{i + 1} + 1} - 2^{-N_i - M_i} + (2k + 1) 2^{-N_{i + 1} - N_i - M_i} > 0
This give us the following bound on `N_{i + 1}`:
.. math::
N_{i + 1} \leq N_i + M_i + 1.
To make the range reduction effective, we will want to maximize `N_{i + 1}`, so
let consider the two cases: `N_{i + 1} = N_i + M_i + 1` and
`N_{i + 1} = N_i + M_i`.
The optimal choice to balance between maximizing `N_{i + 1}` and minimizing the
precision needed for `s_{i, k}` is:
.. math::
N_{i + 1} = N_i + M_i,
and in this case, the optimal `\operatorname{ulp}(s_{i, k})` is:
.. math::
\operatorname{ulp}(s_{i, k}) = 2^{-N_i - M_i}
and the corresponding `\operatorname{ulp}(u_{i + 1})` is:
.. math::
\operatorname{ulp}(u_{i + 1}) &= \operatorname{ulp}(u_i) \operatorname{ulp}(s_{i, k}) \\
&= \operatorname{ulp}(u_i) \cdot 2^{-N_i - M_i} \\
&= \operatorname{ulp}(u_0) \cdot 2^{-N_0 - M_0} \cdot 2^{-N_0 - M_0 - M_1} \cdots 2^{-N_0 - M_0 - M_1 - \cdots - M_i} \\
&= 2^{-N_0 - 53} \cdot 2^{-N_0 - M_0} \cdot 2^{-N_0 - M_0 - M_1} \cdots 2^{-N_0 - M_0 - M_1 - \cdots - M_i}
Since `|u_{i + 1}| < 2^{-N_{i + 1}} = 2^{-N_0 - M_1 - ... -M_i}`, the precision
of `u_{i + 1}` is:
.. math::
\operatorname{prec}(u_{i + 1}) &= (N_0 + 53) + (N_0 + M_0) + \cdots +
(N_0 + M_0 + \cdots + M_i) - (N_0 + M_0 + \cdots + M_i) \\
&= (i + 1) N_0 + i M_0 + (i - 1) M_1 + \cdots + M_{i - 1} + 53
If we choose to have the same `M_0 = M_1 = \cdots = M_i = M`, this can be
simplified to:
.. math::
\operatorname{prec}(u_{i + 1}) = (i + 1) N_0 + \frac{i(i + 1)}{2} \cdot M + 53.
We summarize the precision analysis for extending the range reduction in the
table below:
+-------+-----+-----------+------------+--------------+-----------------+-------------------+
| `N_0` | `M` | No. steps | Table size | Output bound | ulp(`s_{i, k}`) | prec(`u_{i + 1}`) |
+-------+-----+-----------+------------+--------------+-----------------+-------------------+
| 7 | 4 | 1 | 32 | `2^{-11}` | `2^{-12}` | 60 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 2 | 64 | `2^{-15}` | `2^{-16}` | 71 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 3 | 96 | `2^{-19}` | `2^{-20}` | 86 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 4 | 128 | `2^{-23}` | `2^{-24}` | 105 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 5 | 160 | `2^{-27}` | `2^{-28}` | 128 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 6 | 192 | `2^{-31}` | `2^{-32}` | 155 |
| +-----+-----------+------------+--------------+-----------------+-------------------+
| | 5 | 3 | 192 | `2^{-22}` | `2^{-23}` | 89 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 4 | 256 | `2^{-27}` | `2^{-28}` | 111 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 5 | 320 | `2^{-32}` | `2^{-33}` | 138 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 6 | 384 | `2^{-37}` | `2^{-38}` | 170 |
| +-----+-----------+------------+--------------+-----------------+-------------------+
| | 6 | 3 | 384 | `2^{-25}` | `2^{-26}` | 92 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 4 | 512 | `2^{-31}` | `2^{-32}` | 117 |
| +-----+-----------+------------+--------------+-----------------+-------------------+
| | 7 | 1 | 256 | `2^{-24}` | `2^{-15}` | 60 |
| | +-----------+------------+--------------+-----------------+-------------------+
| | | 2 | 512 | `2^{-21}` | `2^{-22}` | 74 |
+-------+-----+-----------+------------+--------------+-----------------+-------------------+
where:
- Number of steps = `i + 1`
- Table size = `(i + 1) 2^{M + 1}`
- Output bound = `2^{-N_{i + 1}} = 2^{-N_0 - (i + 1) M}`
- `\operatorname{ulp}(s_{i, k}) = 2^{-N_{i + 1} - 1}`
- `\operatorname{prec}(u_{i + 1}) = (i + 1) N_0 + \frac{i(i + 1)}{2} \cdot M + 53`
|