1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03, c++11, c++14, c++17
// <algorithm>
// template<permutable I, sentinel_for<I> S, class Proj = identity,
// indirect_unary_predicate<projected<I, Proj>> Pred>
// constexpr subrange<I>
// partition(I first, S last, Pred pred, Proj proj = {}); // Since C++20
//
// template<forward_range R, class Proj = identity,
// indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
// requires permutable<iterator_t<R>>
// constexpr borrowed_subrange_t<R>
// partition(R&& r, Pred pred, Proj proj = {}); // Since C++20
#include <algorithm>
#include <array>
#include <concepts>
#include <functional>
#include <ranges>
#include "almost_satisfies_types.h"
#include "test_iterators.h"
struct UnaryPred { bool operator()(int) const; };
// Test constraints of the (iterator, sentinel) overload.
// ======================================================
template <class Iter = int*, class Sent = int*, class Pred = UnaryPred>
concept HasPartitionIter =
requires(Iter&& iter, Sent&& sent, Pred&& pred) {
std::ranges::partition(std::forward<Iter>(iter), std::forward<Sent>(sent), std::forward<Pred>(pred));
};
static_assert(HasPartitionIter<int*, int*, UnaryPred>);
// !permutable<I>
static_assert(!HasPartitionIter<PermutableNotForwardIterator>);
static_assert(!HasPartitionIter<PermutableNotSwappable>);
// !sentinel_for<S, I>
static_assert(!HasPartitionIter<int*, SentinelForNotSemiregular>);
static_assert(!HasPartitionIter<int*, SentinelForNotWeaklyEqualityComparableWith>);
// !indirect_unary_predicate<projected<I, Proj>>
static_assert(!HasPartitionIter<int*, int*, IndirectUnaryPredicateNotPredicate>);
static_assert(!HasPartitionIter<int*, int*, IndirectUnaryPredicateNotCopyConstructible>);
// Test constraints of the (range) overload.
// =========================================
template <class Range, class Pred>
concept HasPartitionRange =
requires(Range&& range, Pred&& pred) {
std::ranges::partition(std::forward<Range>(range), std::forward<Pred>(pred));
};
template <class T>
using R = UncheckedRange<T>;
static_assert(HasPartitionRange<R<int*>, UnaryPred>);
// !forward_range<R>
static_assert(!HasPartitionRange<ForwardRangeNotDerivedFrom, UnaryPred>);
static_assert(!HasPartitionRange<ForwardRangeNotIncrementable, UnaryPred>);
// !indirect_unary_predicate<projected<iterator_t<R>, Proj>> Pred>
static_assert(!HasPartitionRange<R<int*>, IndirectUnaryPredicateNotPredicate>);
static_assert(!HasPartitionRange<R<int*>, IndirectUnaryPredicateNotCopyConstructible>);
// !permutable<iterator_t<R>>
static_assert(!HasPartitionRange<R<PermutableNotForwardIterator>, UnaryPred>);
static_assert(!HasPartitionRange<R<PermutableNotSwappable>, UnaryPred>);
// `partition` isn't a stable algorithm so this function cannot test the exact output.
template <class Iter, class Sent, size_t N, class Pred>
constexpr void test_one(std::array<int, N> input, Pred pred, size_t partition_point) {
auto neg_pred = [&](int x) { return !pred(x); };
{ // (iterator, sentinel) overload.
auto partitioned = input;
auto b = Iter(partitioned.data());
auto e = Sent(Iter(partitioned.data() + partitioned.size()));
std::same_as<std::ranges::subrange<Iter>> decltype(auto) result = std::ranges::partition(b, e, pred);
assert(base(result.begin()) == partitioned.data() + partition_point);
assert(base(result.end()) == partitioned.data() + partitioned.size());
assert(std::ranges::all_of(b, result.begin(), pred));
assert(std::ranges::all_of(result.begin(), e, neg_pred));
}
{ // (range) overload.
auto partitioned = input;
auto b = Iter(partitioned.data());
auto e = Sent(Iter(partitioned.data() + partitioned.size()));
auto range = std::ranges::subrange(b, e);
std::same_as<std::ranges::subrange<Iter>> decltype(auto) result = std::ranges::partition(range, pred);
assert(base(result.begin()) == partitioned.data() + partition_point);
assert(base(result.end()) == partitioned.data() + partitioned.size());
assert(std::ranges::all_of(b, result.begin(), pred));
assert(std::ranges::all_of(result.begin(), e, neg_pred));
}
}
template <class Iter, class Sent>
constexpr void test_iterators_2() {
auto is_odd = [](int x) { return x % 2 != 0; };
// Empty sequence.
test_one<Iter, Sent, 0>({}, is_odd, 0);
// 1-element sequence, the element satisfies the predicate.
test_one<Iter, Sent, 1>({1}, is_odd, 1);
// 1-element sequence, the element doesn't satisfy the predicate.
test_one<Iter, Sent, 1>({2}, is_odd, 0);
// 2-element sequence, not in order.
test_one<Iter, Sent, 2>({2, 1}, is_odd, 1);
// 2-element sequence, already in order.
test_one<Iter, Sent, 2>({1, 2}, is_odd, 1);
// 3-element sequence.
test_one<Iter, Sent, 3>({2, 1, 3}, is_odd, 2);
// Longer sequence.
test_one<Iter, Sent, 8>({2, 1, 3, 6, 8, 4, 11, 5}, is_odd, 4);
// Longer sequence with duplicates.
test_one<Iter, Sent, 8>({2, 1, 3, 6, 2, 8, 1, 6}, is_odd, 3);
// All elements are the same and satisfy the predicate.
test_one<Iter, Sent, 3>({1, 1, 1}, is_odd, 3);
// All elements are the same and don't satisfy the predicate.
test_one<Iter, Sent, 3>({2, 2, 2}, is_odd, 0);
// Already partitioned.
test_one<Iter, Sent, 6>({1, 3, 5, 4, 6, 8}, is_odd, 3);
// Reverse-partitioned.
test_one<Iter, Sent, 6>({4, 6, 8, 1, 3, 5}, is_odd, 3);
// Repeating pattern.
test_one<Iter, Sent, 6>({1, 2, 1, 2, 1, 2}, is_odd, 3);
auto is_negative = [](int x) { return x < 0; };
// Different comparator.
test_one<Iter, Sent, 5>({-3, 5, 7, -6, 2}, is_negative, 2);
}
template <class Iter>
constexpr void test_iterators_1() {
test_iterators_2<Iter, Iter>();
test_iterators_2<Iter, sentinel_wrapper<Iter>>();
}
constexpr void test_iterators() {
test_iterators_1<forward_iterator<int*>>();
test_iterators_1<bidirectional_iterator<int*>>();
test_iterators_1<random_access_iterator<int*>>();
test_iterators_1<contiguous_iterator<int*>>();
test_iterators_1<int*>();
}
constexpr bool test() {
test_iterators();
{ // A custom projection works.
const std::array input = {1, -1};
auto is_negative = [](int x) { return x < 0; };
auto negate = [](int x) { return -x; };
const std::array expected_no_proj = {-1, 1};
const std::array expected_with_proj = {1, -1};
{ // (iterator, sentinel) overload.
{
auto in = input;
std::ranges::partition(in.begin(), in.end(), is_negative);
assert(in == expected_no_proj);
}
{
auto in = input;
std::ranges::partition(in.begin(), in.end(), is_negative, negate);
assert(in == expected_with_proj);
}
}
{ // (range) overload.
{
auto in = input;
std::ranges::partition(in, is_negative);
assert(in == expected_no_proj);
}
{
auto in = input;
std::ranges::partition(in, is_negative, negate);
assert(in == expected_with_proj);
}
}
}
return true;
}
int main(int, char**) {
test();
static_assert(test());
return 0;
}
|