1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// UNSUPPORTED: c++03, c++11, c++14, c++17
// <algorithm>
// template<forward_iterator I1, sentinel_for<I1> S1, forward_iterator I2,
// sentinel_for<I2> S2, class Proj1 = identity, class Proj2 = identity,
// indirect_equivalence_relation<projected<I1, Proj1>,
// projected<I2, Proj2>> Pred = ranges::equal_to>
// constexpr bool ranges::is_permutation(I1 first1, S1 last1, I2 first2, S2 last2,
// Pred pred = {},
// Proj1 proj1 = {}, Proj2 proj2 = {}); // Since C++20
//
// template<forward_range R1, forward_range R2,
// class Proj1 = identity, class Proj2 = identity,
// indirect_equivalence_relation<projected<iterator_t<R1>, Proj1>,
// projected<iterator_t<R2>, Proj2>> Pred = ranges::equal_to>
// constexpr bool ranges::is_permutation(R1&& r1, R2&& r2, Pred pred = {},
// Proj1 proj1 = {}, Proj2 proj2 = {}); // Since C++20
#include <algorithm>
#include <array>
#include <concepts>
#include <list>
#include <ranges>
#include "almost_satisfies_types.h"
#include "counting_predicates.h"
#include "counting_projection.h"
#include "test_iterators.h"
template <class Iter1, class Sent1 = int*, class Iter2 = int*, class Sent2 = int*>
concept HasIsPermutationIt = requires(Iter1 first1, Sent1 last1, Iter2 first2, Sent2 last2) {
std::ranges::is_permutation(first1, last1, first2, last2);
};
template <class Range1, class Range2 = UncheckedRange<int*>>
concept HasIsPermutationR = requires(Range1 range1, Range2 range2) {
std::ranges::is_permutation(range1, range2);
};
static_assert(HasIsPermutationIt<int*>);
static_assert(!HasIsPermutationIt<ForwardIteratorNotDerivedFrom>);
static_assert(!HasIsPermutationIt<ForwardIteratorNotIncrementable>);
static_assert(!HasIsPermutationIt<int*, SentinelForNotSemiregular>);
static_assert(!HasIsPermutationIt<int*, SentinelForNotWeaklyEqualityComparableWith>);
static_assert(!HasIsPermutationIt<int*, int*, ForwardIteratorNotDerivedFrom>);
static_assert(!HasIsPermutationIt<int*, int*, ForwardIteratorNotIncrementable>);
static_assert(!HasIsPermutationIt<int*, int*, int*, SentinelForNotSemiregular>);
static_assert(!HasIsPermutationIt<int*, int*, int*, SentinelForNotWeaklyEqualityComparableWith>);
// !indirect_equivalence_relation<Pred, projected<I1, Proj1>, projected<I2, Proj2>>;
static_assert(!HasIsPermutationIt<int*, int*, int**, int**>);
static_assert(HasIsPermutationR<UncheckedRange<int*>>);
static_assert(!HasIsPermutationR<ForwardRangeNotDerivedFrom>);
static_assert(!HasIsPermutationR<ForwardRangeNotIncrementable>);
static_assert(!HasIsPermutationR<int*, ForwardRangeNotSentinelSemiregular>);
static_assert(!HasIsPermutationR<int*, ForwardRangeNotSentinelEqualityComparableWith>);
static_assert(!HasIsPermutationR<UncheckedRange<int*>, ForwardRangeNotDerivedFrom>);
static_assert(!HasIsPermutationR<UncheckedRange<int*>, ForwardRangeNotIncrementable>);
static_assert(!HasIsPermutationR<UncheckedRange<int*>, ForwardRangeNotSentinelSemiregular>);
static_assert(!HasIsPermutationR<UncheckedRange<int*>, ForwardRangeNotSentinelEqualityComparableWith>);
// !indirect_equivalence_relation<Pred, projected<iterator_t<I1>, Proj1>, projected<iterator_t<I2>, Proj2>>;
static_assert(!HasIsPermutationIt<UncheckedRange<int*>, UncheckedRange<int**>>);
template <int N, int M>
struct Data {
std::array<int, N> input1;
std::array<int, M> input2;
bool expected;
};
template <class Iter1, class Sent1, class Iter2, class Sent2, int N, int M>
constexpr void test(Data<N, M> d) {
{
std::same_as<bool> decltype(auto) ret = std::ranges::is_permutation(Iter1(d.input1.data()),
Sent1(Iter1(d.input1.data() + N)),
Iter1(d.input2.data()),
Sent1(Iter1(d.input2.data() + M)));
assert(ret == d.expected);
}
{
auto range1 = std::ranges::subrange(Iter1(d.input1.data()), Sent1(Iter1(d.input1.data() + N)));
auto range2 = std::ranges::subrange(Iter1(d.input2.data()), Sent1(Iter1(d.input2.data() + M)));
std::same_as<bool> decltype(auto) ret = std::ranges::is_permutation(range1, range2);
assert(ret == d.expected);
}
}
template <class Iter1, class Sent1, class Iter2, class Sent2 = Iter2>
constexpr void test_iterators() {
// Ranges are identical.
test<Iter1, Sent1, Iter2, Sent2, 4, 4>({.input1 = {1, 2, 3, 4}, .input2 = {1, 2, 3, 4}, .expected = true});
// Ranges are reversed.
test<Iter1, Sent1, Iter2, Sent2, 4, 4>({.input1 = {1, 2, 3, 4}, .input2 = {4, 3, 2, 1}, .expected = true});
// Two elements are swapped.
test<Iter1, Sent1, Iter2, Sent2, 4, 4>({.input1 = {4, 2, 3, 1}, .input2 = {1, 2, 3, 4}, .expected = true});
// The first range is shorter.
test<Iter1, Sent1, Iter2, Sent2, 4, 5>({.input1 = {4, 2, 3, 1}, .input2 = {4, 3, 2, 1, 5}, .expected = false});
// The first range is longer.
test<Iter1, Sent1, Iter2, Sent2, 5, 4>({.input1 = {4, 2, 3, 1, 5}, .input2 = {4, 3, 2, 1}, .expected = false});
// The first range is empty.
test<Iter1, Sent1, Iter2, Sent2, 0, 4>({.input1 = {}, .input2 = {4, 3, 2, 1}, .expected = false});
// The second range is empty.
test<Iter1, Sent1, Iter2, Sent2, 5, 0>({.input1 = {4, 2, 3, 1, 5}, .input2 = {}, .expected = false});
// Both ranges are empty.
test<Iter1, Sent1, Iter2, Sent2, 0, 0>({.input1 = {}, .input2 = {}, .expected = true});
// 1-element range, same value.
test<Iter1, Sent1, Iter2, Sent2, 1, 1>({.input1 = {1}, .input2 = {1}, .expected = true});
// 1-element range, different values.
test<Iter1, Sent1, Iter2, Sent2, 1, 1>({.input1 = {1}, .input2 = {2}, .expected = false});
}
template <class Iter1, class Sent1 = Iter1>
constexpr void test_iterators1() {
test_iterators<Iter1, Sent1, forward_iterator<int*>, sentinel_wrapper<forward_iterator<int*>>>();
test_iterators<Iter1, Sent1, forward_iterator<int*>>();
test_iterators<Iter1, Sent1, bidirectional_iterator<int*>>();
test_iterators<Iter1, Sent1, random_access_iterator<int*>>();
test_iterators<Iter1, Sent1, contiguous_iterator<int*>>();
test_iterators<Iter1, Sent1, int*>();
test_iterators<Iter1, Sent1, const int*>();
}
constexpr bool test() {
test_iterators1<forward_iterator<int*>, sentinel_wrapper<forward_iterator<int*>>>();
test_iterators1<forward_iterator<int*>>();
test_iterators1<bidirectional_iterator<int*>>();
test_iterators1<random_access_iterator<int*>>();
test_iterators1<contiguous_iterator<int*>>();
test_iterators1<int*>();
test_iterators1<const int*>();
{ // A custom comparator works.
struct A {
int a;
constexpr bool pred(const A& rhs) const { return a == rhs.a; }
};
std::array in1 = {A{2}, A{3}, A{1}};
std::array in2 = {A{1}, A{2}, A{3}};
{
auto ret = std::ranges::is_permutation(in1.begin(), in1.end(), in2.begin(), in2.end(), &A::pred);
assert(ret);
}
{
auto ret = std::ranges::is_permutation(in1, in2, &A::pred);
assert(ret);
}
}
{ // A custom projection works.
struct A {
int a;
constexpr bool operator==(const A&) const = default;
constexpr A x2() const { return A{a * 2}; }
constexpr A div2() const { return A{a / 2}; }
};
std::array in1 = {A{1}, A{2}, A{3}}; // [2, 4, 6] after applying `x2`.
std::array in2 = {A{4}, A{8}, A{12}}; // [2, 4, 6] after applying `div2`.
{
auto ret = std::ranges::is_permutation(
in1.begin(), in1.end(), in2.begin(), in2.end(), {}, &A::x2, &A::div2);
assert(ret);
}
{
auto ret = std::ranges::is_permutation(in1, in2, {}, &A::x2, &A::div2);
assert(ret);
}
}
{ // Check that complexity requirements are met.
int predCount = 0;
int proj1Count = 0;
int proj2Count = 0;
auto reset_counters = [&] {
predCount = proj1Count = proj2Count = 0;
};
counting_predicate pred(std::ranges::equal_to{}, predCount);
counting_projection<> proj1(proj1Count);
counting_projection<> proj2(proj2Count);
{
// 1. No applications of the corresponding predicate if `ForwardIterator1` and `ForwardIterator2` meet the
// requirements of random access iterators and `last1 - first1 != last2 - first2`.
int a[] = {1, 2, 3, 4, 5};
int b[] = {1, 2, 3, 4};
// Make sure that the iterators have different types.
auto b_begin = random_access_iterator<int*>(std::begin(b));
auto b_end = random_access_iterator<int*>(std::end(b));
{
auto ret = std::ranges::is_permutation(a, a + 5, b_begin, b_end, pred, proj1, proj2);
assert(!ret);
assert(predCount == 0);
assert(proj1Count == 0);
assert(proj2Count == 0);
reset_counters();
}
{
auto ret = std::ranges::is_permutation(a, std::ranges::subrange(b_begin, b_end), pred, proj1, proj2);
assert(!ret);
assert(predCount == 0);
assert(proj1Count == 0);
assert(proj2Count == 0);
reset_counters();
}
}
// 2. Otherwise, exactly last1 - first1 applications of the corresponding predicate if
// `equal(first1, last1, first2, last2, pred)` would return true.
{
int a[] = {1, 2, 3, 4, 5};
int b[] = {1, 2, 3, 4, 5};
int expected = 5;
{
auto ret = std::ranges::is_permutation(a, a + 5, b, b + 5, pred, proj1, proj2);
assert(ret);
assert(predCount == expected);
assert(proj1Count == expected);
assert(proj2Count == expected);
reset_counters();
}
{
auto ret = std::ranges::is_permutation(a, b, pred, proj1, proj2);
assert(ret);
assert(predCount == expected);
assert(proj1Count == expected);
assert(proj2Count == expected);
reset_counters();
}
}
// Note: we currently don't have the setup to test big-O complexity, but copying the requirement for completeness'
// sake.
// 3. Otherwise, at worst `O(N^2)`, where `N` has the value `last1 - first1`.
}
return true;
}
int main(int, char**) {
test();
static_assert(test());
return 0;
}
|