1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
//===- ConvergenceUtils.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/UniformityAnalysis.h"
#include "llvm/ADT/GenericUniformityImpl.h"
#include "llvm/Analysis/CycleAnalysis.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
template <>
bool llvm::GenericUniformityAnalysisImpl<SSAContext>::hasDivergentDefs(
const Instruction &I) const {
return isDivergent((const Value *)&I);
}
template <>
bool llvm::GenericUniformityAnalysisImpl<SSAContext>::markDefsDivergent(
const Instruction &Instr, bool AllDefsDivergent) {
return markDivergent(&Instr);
}
template <> void llvm::GenericUniformityAnalysisImpl<SSAContext>::initialize() {
for (auto &I : instructions(F)) {
if (TTI->isSourceOfDivergence(&I)) {
assert(!I.isTerminator());
markDivergent(I);
} else if (TTI->isAlwaysUniform(&I)) {
addUniformOverride(I);
}
}
for (auto &Arg : F.args()) {
if (TTI->isSourceOfDivergence(&Arg)) {
markDivergent(&Arg);
}
}
}
template <>
void llvm::GenericUniformityAnalysisImpl<SSAContext>::pushUsers(
const Value *V) {
for (const auto *User : V->users()) {
const auto *UserInstr = dyn_cast<const Instruction>(User);
if (!UserInstr)
continue;
if (isAlwaysUniform(*UserInstr))
continue;
if (markDivergent(*UserInstr)) {
Worklist.push_back(UserInstr);
}
}
}
template <>
void llvm::GenericUniformityAnalysisImpl<SSAContext>::pushUsers(
const Instruction &Instr) {
assert(!isAlwaysUniform(Instr));
if (Instr.isTerminator())
return;
pushUsers(cast<Value>(&Instr));
}
template <>
bool llvm::GenericUniformityAnalysisImpl<SSAContext>::usesValueFromCycle(
const Instruction &I, const Cycle &DefCycle) const {
if (isAlwaysUniform(I))
return false;
for (const Use &U : I.operands()) {
if (auto *I = dyn_cast<Instruction>(&U)) {
if (DefCycle.contains(I->getParent()))
return true;
}
}
return false;
}
// This ensures explicit instantiation of
// GenericUniformityAnalysisImpl::ImplDeleter::operator()
template class llvm::GenericUniformityInfo<SSAContext>;
template struct llvm::GenericUniformityAnalysisImplDeleter<
llvm::GenericUniformityAnalysisImpl<SSAContext>>;
//===----------------------------------------------------------------------===//
// UniformityInfoAnalysis and related pass implementations
//===----------------------------------------------------------------------===//
llvm::UniformityInfo UniformityInfoAnalysis::run(Function &F,
FunctionAnalysisManager &FAM) {
auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
auto &CI = FAM.getResult<CycleAnalysis>(F);
return UniformityInfo{F, DT, CI, &TTI};
}
AnalysisKey UniformityInfoAnalysis::Key;
UniformityInfoPrinterPass::UniformityInfoPrinterPass(raw_ostream &OS)
: OS(OS) {}
PreservedAnalyses UniformityInfoPrinterPass::run(Function &F,
FunctionAnalysisManager &AM) {
OS << "UniformityInfo for function '" << F.getName() << "':\n";
AM.getResult<UniformityInfoAnalysis>(F).print(OS);
return PreservedAnalyses::all();
}
//===----------------------------------------------------------------------===//
// UniformityInfoWrapperPass Implementation
//===----------------------------------------------------------------------===//
char UniformityInfoWrapperPass::ID = 0;
UniformityInfoWrapperPass::UniformityInfoWrapperPass() : FunctionPass(ID) {
initializeUniformityInfoWrapperPassPass(*PassRegistry::getPassRegistry());
}
INITIALIZE_PASS_BEGIN(UniformityInfoWrapperPass, "uniforminfo",
"Uniform Info Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(UniformityInfoWrapperPass, "uniforminfo",
"Uniform Info Analysis", true, true)
void UniformityInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<CycleInfoWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
}
bool UniformityInfoWrapperPass::runOnFunction(Function &F) {
auto &cycleInfo = getAnalysis<CycleInfoWrapperPass>().getResult();
auto &domTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto &targetTransformInfo =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
m_function = &F;
m_uniformityInfo =
UniformityInfo{F, domTree, cycleInfo, &targetTransformInfo};
return false;
}
void UniformityInfoWrapperPass::print(raw_ostream &OS, const Module *) const {
OS << "UniformityInfo for function '" << m_function->getName() << "':\n";
}
void UniformityInfoWrapperPass::releaseMemory() {
m_uniformityInfo = UniformityInfo{};
m_function = nullptr;
}
|