1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
//===-- AMDGPUMemoryUtils.cpp - -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "AMDGPUMemoryUtils.h"
#include "AMDGPU.h"
#include "AMDGPUBaseInfo.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/ReplaceConstant.h"
#define DEBUG_TYPE "amdgpu-memory-utils"
using namespace llvm;
namespace llvm {
namespace AMDGPU {
Align getAlign(DataLayout const &DL, const GlobalVariable *GV) {
return DL.getValueOrABITypeAlignment(GV->getPointerAlignment(DL),
GV->getValueType());
}
static bool shouldLowerLDSToStruct(const GlobalVariable &GV,
const Function *F) {
// We are not interested in kernel LDS lowering for module LDS itself.
if (F && GV.getName() == "llvm.amdgcn.module.lds")
return false;
bool Ret = false;
SmallPtrSet<const User *, 8> Visited;
SmallVector<const User *, 16> Stack(GV.users());
assert(!F || isKernelCC(F));
while (!Stack.empty()) {
const User *V = Stack.pop_back_val();
Visited.insert(V);
if (isa<GlobalValue>(V)) {
// This use of the LDS variable is the initializer of a global variable.
// This is ill formed. The address of an LDS variable is kernel dependent
// and unknown until runtime. It can't be written to a global variable.
continue;
}
if (auto *I = dyn_cast<Instruction>(V)) {
const Function *UF = I->getFunction();
if (UF == F) {
// Used from this kernel, we want to put it into the structure.
Ret = true;
} else if (!F) {
// For module LDS lowering, lowering is required if the user instruction
// is from non-kernel function.
Ret |= !isKernelCC(UF);
}
continue;
}
// User V should be a constant, recursively visit users of V.
assert(isa<Constant>(V) && "Expected a constant.");
append_range(Stack, V->users());
}
return Ret;
}
bool isLDSVariableToLower(const GlobalVariable &GV) {
if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
return false;
}
if (!GV.hasInitializer()) {
// addrspace(3) without initializer implies cuda/hip extern __shared__
// the semantics for such a variable appears to be that all extern
// __shared__ variables alias one another, in which case this transform
// is not required
return false;
}
if (!isa<UndefValue>(GV.getInitializer())) {
// Initializers are unimplemented for LDS address space.
// Leave such variables in place for consistent error reporting.
return false;
}
if (GV.isConstant()) {
// A constant undef variable can't be written to, and any load is
// undef, so it should be eliminated by the optimizer. It could be
// dropped by the back end if not. This pass skips over it.
return false;
}
return true;
}
std::vector<GlobalVariable *> findLDSVariablesToLower(Module &M,
const Function *F) {
std::vector<llvm::GlobalVariable *> LocalVars;
for (auto &GV : M.globals()) {
if (!isLDSVariableToLower(GV)) {
continue;
}
if (!shouldLowerLDSToStruct(GV, F)) {
continue;
}
LocalVars.push_back(&GV);
}
return LocalVars;
}
bool isReallyAClobber(const Value *Ptr, MemoryDef *Def, AAResults *AA) {
Instruction *DefInst = Def->getMemoryInst();
if (isa<FenceInst>(DefInst))
return false;
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
switch (II->getIntrinsicID()) {
case Intrinsic::amdgcn_s_barrier:
case Intrinsic::amdgcn_wave_barrier:
case Intrinsic::amdgcn_sched_barrier:
case Intrinsic::amdgcn_sched_group_barrier:
return false;
default:
break;
}
}
// Ignore atomics not aliasing with the original load, any atomic is a
// universal MemoryDef from MSSA's point of view too, just like a fence.
const auto checkNoAlias = [AA, Ptr](auto I) -> bool {
return I && AA->isNoAlias(I->getPointerOperand(), Ptr);
};
if (checkNoAlias(dyn_cast<AtomicCmpXchgInst>(DefInst)) ||
checkNoAlias(dyn_cast<AtomicRMWInst>(DefInst)))
return false;
return true;
}
bool isClobberedInFunction(const LoadInst *Load, MemorySSA *MSSA,
AAResults *AA) {
MemorySSAWalker *Walker = MSSA->getWalker();
SmallVector<MemoryAccess *> WorkList{Walker->getClobberingMemoryAccess(Load)};
SmallSet<MemoryAccess *, 8> Visited;
MemoryLocation Loc(MemoryLocation::get(Load));
LLVM_DEBUG(dbgs() << "Checking clobbering of: " << *Load << '\n');
// Start with a nearest dominating clobbering access, it will be either
// live on entry (nothing to do, load is not clobbered), MemoryDef, or
// MemoryPhi if several MemoryDefs can define this memory state. In that
// case add all Defs to WorkList and continue going up and checking all
// the definitions of this memory location until the root. When all the
// defs are exhausted and came to the entry state we have no clobber.
// Along the scan ignore barriers and fences which are considered clobbers
// by the MemorySSA, but not really writing anything into the memory.
while (!WorkList.empty()) {
MemoryAccess *MA = WorkList.pop_back_val();
if (!Visited.insert(MA).second)
continue;
if (MSSA->isLiveOnEntryDef(MA))
continue;
if (MemoryDef *Def = dyn_cast<MemoryDef>(MA)) {
LLVM_DEBUG(dbgs() << " Def: " << *Def->getMemoryInst() << '\n');
if (isReallyAClobber(Load->getPointerOperand(), Def, AA)) {
LLVM_DEBUG(dbgs() << " -> load is clobbered\n");
return true;
}
WorkList.push_back(
Walker->getClobberingMemoryAccess(Def->getDefiningAccess(), Loc));
continue;
}
const MemoryPhi *Phi = cast<MemoryPhi>(MA);
for (const auto &Use : Phi->incoming_values())
WorkList.push_back(cast<MemoryAccess>(&Use));
}
LLVM_DEBUG(dbgs() << " -> no clobber\n");
return false;
}
} // end namespace AMDGPU
} // end namespace llvm
|