1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
//===-- LoongArchTargetMachine.cpp - Define TargetMachine for LoongArch ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implements the info about LoongArch target spec.
//
//===----------------------------------------------------------------------===//
#include "LoongArchTargetMachine.h"
#include "LoongArch.h"
#include "LoongArchMachineFunctionInfo.h"
#include "MCTargetDesc/LoongArchBaseInfo.h"
#include "TargetInfo/LoongArchTargetInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/MC/TargetRegistry.h"
#include <optional>
using namespace llvm;
#define DEBUG_TYPE "loongarch"
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeLoongArchTarget() {
// Register the target.
RegisterTargetMachine<LoongArchTargetMachine> X(getTheLoongArch32Target());
RegisterTargetMachine<LoongArchTargetMachine> Y(getTheLoongArch64Target());
auto *PR = PassRegistry::getPassRegistry();
initializeLoongArchPreRAExpandPseudoPass(*PR);
initializeLoongArchDAGToDAGISelPass(*PR);
}
static std::string computeDataLayout(const Triple &TT) {
if (TT.isArch64Bit())
return "e-m:e-p:64:64-i64:64-i128:128-n64-S128";
assert(TT.isArch32Bit() && "only LA32 and LA64 are currently supported");
return "e-m:e-p:32:32-i64:64-n32-S128";
}
static Reloc::Model getEffectiveRelocModel(const Triple &TT,
std::optional<Reloc::Model> RM) {
return RM.value_or(Reloc::Static);
}
LoongArchTargetMachine::LoongArchTargetMachine(
const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
const TargetOptions &Options, std::optional<Reloc::Model> RM,
std::optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT)
: LLVMTargetMachine(T, computeDataLayout(TT), TT, CPU, FS, Options,
getEffectiveRelocModel(TT, RM),
getEffectiveCodeModel(CM, CodeModel::Small), OL),
TLOF(std::make_unique<TargetLoweringObjectFileELF>()) {
initAsmInfo();
}
LoongArchTargetMachine::~LoongArchTargetMachine() = default;
const LoongArchSubtarget *
LoongArchTargetMachine::getSubtargetImpl(const Function &F) const {
Attribute CPUAttr = F.getFnAttribute("target-cpu");
Attribute TuneAttr = F.getFnAttribute("tune-cpu");
Attribute FSAttr = F.getFnAttribute("target-features");
std::string CPU =
CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
std::string TuneCPU =
TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
std::string FS =
FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
std::string Key = CPU + TuneCPU + FS;
auto &I = SubtargetMap[Key];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
auto ABIName = Options.MCOptions.getABIName();
if (const MDString *ModuleTargetABI = dyn_cast_or_null<MDString>(
F.getParent()->getModuleFlag("target-abi"))) {
auto TargetABI = LoongArchABI::getTargetABI(ABIName);
if (TargetABI != LoongArchABI::ABI_Unknown &&
ModuleTargetABI->getString() != ABIName) {
report_fatal_error("-target-abi option != target-abi module flag");
}
ABIName = ModuleTargetABI->getString();
}
I = std::make_unique<LoongArchSubtarget>(TargetTriple, CPU, TuneCPU, FS,
ABIName, *this);
}
return I.get();
}
MachineFunctionInfo *LoongArchTargetMachine::createMachineFunctionInfo(
BumpPtrAllocator &Allocator, const Function &F,
const TargetSubtargetInfo *STI) const {
return LoongArchMachineFunctionInfo::create<LoongArchMachineFunctionInfo>(
Allocator, F, STI);
}
namespace {
class LoongArchPassConfig : public TargetPassConfig {
public:
LoongArchPassConfig(LoongArchTargetMachine &TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
LoongArchTargetMachine &getLoongArchTargetMachine() const {
return getTM<LoongArchTargetMachine>();
}
void addIRPasses() override;
bool addInstSelector() override;
void addPreEmitPass() override;
void addPreEmitPass2() override;
void addPreRegAlloc() override;
};
} // end namespace
TargetPassConfig *
LoongArchTargetMachine::createPassConfig(PassManagerBase &PM) {
return new LoongArchPassConfig(*this, PM);
}
void LoongArchPassConfig::addIRPasses() {
addPass(createAtomicExpandPass());
TargetPassConfig::addIRPasses();
}
bool LoongArchPassConfig::addInstSelector() {
addPass(createLoongArchISelDag(getLoongArchTargetMachine()));
return false;
}
void LoongArchPassConfig::addPreEmitPass() { addPass(&BranchRelaxationPassID); }
void LoongArchPassConfig::addPreEmitPass2() {
// Schedule the expansion of AtomicPseudos at the last possible moment,
// avoiding the possibility for other passes to break the requirements for
// forward progress in the LL/SC block.
addPass(createLoongArchExpandAtomicPseudoPass());
}
void LoongArchPassConfig::addPreRegAlloc() {
addPass(createLoongArchPreRAExpandPseudoPass());
}
|