File: M68kInstrFormats.td

package info (click to toggle)
llvm-toolchain-16 1%3A16.0.6-15~deb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,634,792 kB
  • sloc: cpp: 6,179,261; ansic: 1,216,205; asm: 741,319; python: 196,614; objc: 75,325; f90: 49,640; lisp: 32,396; pascal: 12,286; sh: 9,394; perl: 7,442; ml: 5,494; awk: 3,523; makefile: 2,723; javascript: 1,206; xml: 886; fortran: 581; cs: 573
file content (511 lines) | stat: -rw-r--r-- 21,423 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
//===-- M68kInstrFormats.td - M68k Instruction Formats -----*- tablegen -*-===//
//                     The LLVM Compiler Infrastructure
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//===----------------------------------------------------------------------===//
///
/// \file
/// This file contains M68k instruction formats.
///
/// Since M68k has quite a lot memory addressing modes there are more
/// instruction prefixes than just i, r and m:
/// TSF  Since     Form                     Letter  Description
///  00   M68000    Dn or An                 r       any register
///  01   M68000    Dn                       d       data register direct
///  02   M68000    An                       a       address register direct
///  03   M68000    (An)                     j       address register indirect
///  04   M68000    (An)+                    o       address register indirect with postincrement
///  05   M68000    -(An)                    e       address register indirect with predecrement
///  06   M68000    (i,An)                   p       address register indirect with displacement
///  10   M68000    (i,An,Xn.L)              f       address register indirect with index and scale = 1
///  07   M68000    (i,An,Xn.W)              F       address register indirect with index and scale = 1
///  12   M68020    (i,An,Xn.L,SCALE)        g       address register indirect with index
///  11   M68020    (i,An,Xn.W,SCALE)        G       address register indirect with index
///  14   M68020    ([bd,An],Xn.L,SCALE,od)  u       memory indirect postindexed mode
///  13   M68020    ([bd,An],Xn.W,SCALE,od)  U       memory indirect postindexed mode
///  16   M68020    ([bd,An,Xn.L,SCALE],od)  v       memory indirect preindexed mode
///  15   M68020    ([bd,An,Xn.W,SCALE],od)  V       memory indirect preindexed mode
///  20   M68000    abs.L                    b       absolute long address
///  17   M68000    abs.W                    B       absolute short address
///  21   M68000    (i,PC)                   q       program counter with displacement
///  23   M68000    (i,PC,Xn.L)              k       program counter with index and scale = 1
///  22   M68000    (i,PC,Xn.W)              K       program counter with index and scale = 1
///  25   M68020    (i,PC,Xn.L,SCALE)        l       program counter with index
///  24   M68020    (i,PC,Xn.W,SCALE)        L       program counter with index
///  27   M68020    ([bd,PC],Xn.L,SCALE,od)  x       program counter memory indirect postindexed mode
///  26   M68020    ([bd,PC],Xn.W,SCALE,od)  X       program counter memory indirect postindexed mode
///  31   M68020    ([bd,PC,Xn.L,SCALE],od)  y       program counter memory indirect preindexed mode
///  30   M68020    ([bd,PC,Xn.W,SCALE],od)  Y       program counter memory indirect preindexed mode
///  32   M68000    #immediate               i       immediate data
///
/// NOTE that long form is always lowercase, word variants are capitalized
///
/// Operand can be qualified with size where appropriate to force a particular
/// instruction encoding, e.g.:
///    (i8,An,Xn.W)             f8      1 extension word
///    (i16,An,Xn.W)            f16     2 extension words
///    (i32,An,Xn.W)            f32     3 extension words
///
/// Form without size qualifier will adapt to operand size automatically, e.g.:
///    (i,An,Xn.W)              f       1, 2 or 3 extension words
///
/// Some forms already imply a particular size of their operands, e.g.:
///    (i,An)                   p       1 extension word and i is 16bit
///
/// Operand order follows x86 Intel order(destination before source), e.g.:
///    MOV8df                   MOVE (4,A0,D0), D1
///
/// Number after instruction mnemonics determines the size of the data
///
//===----------------------------------------------------------------------===//

/// ??? Is it possible to use this stuff for disassembling?
/// NOTE 1: In case of conditional beads(DA, DAReg), cond part is able to
/// consume any bit, though a more general instructions must be chosen, e.g.
/// d -> r, a -> r

//===----------------------------------------------------------------------===//
// Encoding primitives
//===----------------------------------------------------------------------===//

class MxBead<bits<4> type, bit b4 = 0, bit b5 = 0, bit b6 = 0, bit b7 = 0> {
  bits<8> Value = 0b00000000;
  let Value{3-0} = type;
  let Value{4} = b4;
  let Value{5} = b5;
  let Value{6} = b6;
  let Value{7} = b7;
}

/// System beads, allow to control beading flow
def   MxBeadTerm   : MxBead<0x0, 0, 0, 0, 0>;
def   MxBeadIgnore : MxBead<0x0, 1, 0, 0, 0>;

/// Add plain bit to the instruction
class MxBead1Bit  <bits<1> b> : MxBead<0x1, b>;
class MxBead2Bits <bits<2> b> : MxBead<0x2, b{0}, b{1}>;
class MxBead3Bits <bits<3> b> : MxBead<0x3, b{0}, b{1}, b{2}>;
class MxBead4Bits <bits<4> b> : MxBead<0x4, b{0}, b{1}, b{2}, b{3}>;

/// bits<3> o - operand number
/// bit a     - use alternative, used to select index register or
///             outer displacement/immediate
/// suffix NP means non-padded
class MxBeadDAReg  <bits<3> o, bit a = 0> : MxBead<0x5, o{0}, o{1}, o{2}, a>;
class MxBeadDA     <bits<3> o, bit a = 0> : MxBead<0x6, o{0}, o{1}, o{2}, a>;
class MxBeadReg    <bits<3> o, bit a = 0> : MxBead<0x7, o{0}, o{1}, o{2}, a>;
class MxBeadDReg   <bits<3> o, bit a = 0> : MxBead<0x8, o{0}, o{1}, o{2}, a>;
class MxBead8Disp  <bits<3> o, bit a = 0> : MxBead<0x9, o{0}, o{1}, o{2}, a>;

/// Add Immediate to the instruction. 8-bit version is padded with zeros to fit
/// the word.
class MxBead8Imm   <bits<3> o, bit a = 0> : MxBead<0xA, o{0}, o{1}, o{2}, a>;
class MxBead16Imm  <bits<3> o, bit a = 0> : MxBead<0xB, o{0}, o{1}, o{2}, a>;
class MxBead32Imm  <bits<3> o, bit a = 0> : MxBead<0xC, o{0}, o{1}, o{2}, a>;

/// Encodes an immediate 0-7(alt. 1-8) into 3 bit field
class MxBead3Imm   <bits<3> o, bit a = 0> : MxBead<0xD, o{0}, o{1}, o{2}, a>;


class MxEncoding<MxBead n0  = MxBeadTerm, MxBead n1  = MxBeadTerm,
                 MxBead n2  = MxBeadTerm, MxBead n3  = MxBeadTerm,
                 MxBead n4  = MxBeadTerm, MxBead n5  = MxBeadTerm,
                 MxBead n6  = MxBeadTerm, MxBead n7  = MxBeadTerm,
                 MxBead n8  = MxBeadTerm, MxBead n9  = MxBeadTerm,
                 MxBead n10 = MxBeadTerm, MxBead n11 = MxBeadTerm,
                 MxBead n12 = MxBeadTerm, MxBead n13 = MxBeadTerm,
                 MxBead n14 = MxBeadTerm, MxBead n15 = MxBeadTerm,
                 MxBead n16 = MxBeadTerm, MxBead n17 = MxBeadTerm,
                 MxBead n18 = MxBeadTerm, MxBead n19 = MxBeadTerm,
                 MxBead n20 = MxBeadTerm, MxBead n21 = MxBeadTerm,
                 MxBead n22 = MxBeadTerm, MxBead n23 = MxBeadTerm> {
  bits <192> Value;
  let Value{7-0}     = n0.Value;
  let Value{15-8}    = n1.Value;
  let Value{23-16}   = n2.Value;
  let Value{31-24}   = n3.Value;
  let Value{39-32}   = n4.Value;
  let Value{47-40}   = n5.Value;
  let Value{55-48}   = n6.Value;
  let Value{63-56}   = n7.Value;
  let Value{71-64}   = n8.Value;
  let Value{79-72}   = n9.Value;
  let Value{87-80}   = n10.Value;
  let Value{95-88}   = n11.Value;
  let Value{103-96}  = n12.Value;
  let Value{111-104} = n13.Value;
  let Value{119-112} = n14.Value;
  let Value{127-120} = n15.Value;
  let Value{135-128} = n16.Value;
  let Value{143-136} = n17.Value;
  let Value{151-144} = n18.Value;
  let Value{159-152} = n19.Value;
  let Value{167-160} = n20.Value;
  let Value{175-168} = n21.Value;
  let Value{183-176} = n22.Value;
  let Value{191-184} = n23.Value;
}

class MxEncFixed<bits<16> value> : MxEncoding {
  let Value{7-0}   = MxBead4Bits<value{3-0}>.Value;
  let Value{15-8}  = MxBead4Bits<value{7-4}>.Value;
  let Value{23-16} = MxBead4Bits<value{11-8}>.Value;
  let Value{31-24} = MxBead4Bits<value{15-12}>.Value;
}

//===----------------------------------------------------------------------===//
// Encoding composites
//
// These must be lowered to MxEncoding by instr specific wrappers
//
// HERE BE DRAGONS...
//===----------------------------------------------------------------------===//

class MxEncByte<bits<8> value> : MxEncoding {
  MxBead4Bits LO = MxBead4Bits<value{3-0}>;
  MxBead4Bits HI = MxBead4Bits<value{7-4}>;
}

def MxEncEmpty : MxEncoding;


/// M68k Standard Effective Address layout:
///
/// :-------------------:
/// | 5  4  3 | 2  1  0 |
/// |   mode  |   reg   |
/// :-------------------:
///
/// If the EA is a direct register mode, bits 4 and 5 are 0, and the register
/// number will be encoded in bit 0 - 3. Since the first address register's
/// (A0) register number is 8, we can easily tell data registers from
/// address registers by only inspecting bit 3 (i.e. if bit 3 is set, it's an
/// address register).
///
///
/// But MOVE instruction uses reversed layout for destination EA:
///
/// :-------------------:
/// | 5  4  3 | 2  1  0 |
/// |   reg   |  mode   |
/// :-------------------:
///
/// And this complicates things a bit because the DA bit is now separated from
/// the register and we have to encode those separately using MxBeadDA<opN>
///
class MxEncEA<MxBead reg, MxBead mode, MxBead da = MxBeadIgnore> {
  MxBead Reg = reg;
  MxBead Mode = mode;
  MxBead DA = da;
}

class MxEncMemOp {
  dag EA = (ascend);
  dag Supplement = (ascend);
}

// FIXME: Is there a way to factorize the addressing mode suffix (i.e.
// 'r', 'd', 'a' etc.) and use something like multiclass to replace?
def MxEncEAr_0: MxEncEA<MxBeadDAReg<0>, MxBead2Bits<0b00>>;
def MxEncEAd_0: MxEncEA<MxBeadDReg<0>, MxBead2Bits<0b00>, MxBead1Bit<0>>;
def MxEncEAa_0: MxEncEA<MxBeadReg<0>, MxBead2Bits<0b00>, MxBead1Bit<1>>;
def MxEncEAj_0: MxEncEA<MxBeadReg<0>, MxBead2Bits<0b01>, MxBead1Bit<0>>;
def MxEncEAo_0: MxEncEA<MxBeadReg<0>, MxBead2Bits<0b01>, MxBead1Bit<1>>;
def MxEncEAe_0: MxEncEA<MxBeadReg<0>, MxBead2Bits<0b10>, MxBead1Bit<0>>;
def MxEncEAp_0: MxEncEA<MxBeadReg<0>, MxBead2Bits<0b10>, MxBead1Bit<1>>;
def MxEncEAf_0: MxEncEA<MxBeadReg<0>, MxBead2Bits<0b11>, MxBead1Bit<0>>;

def MxEncEAa_0_reflected : MxEncEA<MxBeadReg<0>, MxBead3Bits<0b001>>;
def MxEncEAr_0_reflected : MxEncEA<MxBeadReg<0>, MxBead2Bits<0b00>, MxBeadDA<0>>;

def MxEncEAr_1: MxEncEA<MxBeadDAReg<1>, MxBead2Bits<0b00>>;
def MxEncEAd_1: MxEncEA<MxBeadDReg<1>, MxBead2Bits<0b00>, MxBead1Bit<0>>;
def MxEncEAa_1: MxEncEA<MxBeadReg<1>, MxBead2Bits<0b00>, MxBead1Bit<1>>;
def MxEncEAj_1: MxEncEA<MxBeadReg<1>, MxBead2Bits<0b01>, MxBead1Bit<0>>;
def MxEncEAo_1: MxEncEA<MxBeadReg<1>, MxBead2Bits<0b01>, MxBead1Bit<1>>;
def MxEncEAe_1: MxEncEA<MxBeadReg<1>, MxBead2Bits<0b10>, MxBead1Bit<0>>;
def MxEncEAp_1: MxEncEA<MxBeadReg<1>, MxBead2Bits<0b10>, MxBead1Bit<1>>;
def MxEncEAf_1: MxEncEA<MxBeadReg<1>, MxBead2Bits<0b11>, MxBead1Bit<0>>;

def MxEncEAr_2: MxEncEA<MxBeadDAReg<2>, MxBead2Bits<0b00>>;
def MxEncEAd_2: MxEncEA<MxBeadDReg<2>, MxBead2Bits<0b00>, MxBead1Bit<0>>;
def MxEncEAa_2: MxEncEA<MxBeadReg<2>, MxBead2Bits<0b00>, MxBead1Bit<1>>;
def MxEncEAj_2: MxEncEA<MxBeadReg<2>, MxBead2Bits<0b01>, MxBead1Bit<0>>;
def MxEncEAo_2: MxEncEA<MxBeadReg<2>, MxBead2Bits<0b01>, MxBead1Bit<1>>;
def MxEncEAe_2: MxEncEA<MxBeadReg<2>, MxBead2Bits<0b10>, MxBead1Bit<0>>;
def MxEncEAp_2: MxEncEA<MxBeadReg<2>, MxBead2Bits<0b10>, MxBead1Bit<1>>;
def MxEncEAf_2: MxEncEA<MxBeadReg<2>, MxBead2Bits<0b11>, MxBead1Bit<0>>;

def MxEncEAb : MxEncEA<MxBead3Bits<0b001>, MxBead2Bits<0b11>, MxBead1Bit<1>>;
def MxEncEAq : MxEncEA<MxBead3Bits<0b010>, MxBead2Bits<0b11>, MxBead1Bit<1>>;
def MxEncEAk : MxEncEA<MxBead3Bits<0b011>, MxBead2Bits<0b11>, MxBead1Bit<1>>;
def MxEncEAi : MxEncEA<MxBead3Bits<0b100>, MxBead2Bits<0b11>, MxBead1Bit<1>>;

class MxEncBriefExt<string reg_opnd, string disp_opnd,
                    bit size_w_l = false, int scale = 1,
                    string disp_encoder = ""> {
  dag Value = (descend
    // D/A + REGISTER
    (operand "$"#reg_opnd, 4),
    // W/L
    size_w_l,
    // SCALE
    !cond(
      !eq(scale, 1) : 0b00,
      !eq(scale, 2) : 0b01,
      !eq(scale, 4) : 0b10,
      !eq(scale, 8) : 0b11
    ),
    0b0,
    // Displacement
    (operand "$"#disp_opnd, 8, (encoder disp_encoder))
  );
}

class MxEncAddrMode_d<string reg_opnd> : MxEncMemOp {
  let EA = (descend /*MODE*/0b000,
                    /*REGISTER*/(operand "$"#reg_opnd, 3));
}

class MxEncAddrMode_a<string reg_opnd> : MxEncMemOp {
  let EA = (descend /*MODE*/0b001,
                    /*REGISTER*/(operand "$"#reg_opnd, 3));
}

class MxEncAddrMode_r<string reg_opnd> : MxEncMemOp {
  let EA = (descend /*MODE without the last bit*/0b00,
                    /*REGISTER with D/A bit*/(operand "$"#reg_opnd, 4));
}

class MxEncAddrMode_k<string opnd_name> : MxEncMemOp {
  let EA = (descend /*MODE*/0b111,
                    /*REGISTER*/0b011);

  let Supplement = MxEncBriefExt<opnd_name#".index", opnd_name#".disp",
                                 /*W/L*/true, /*SCALE*/1,
                                 "encodePCRelImm<8>">.Value;
}

class MxEncAddrMode_q<string opnd_name> : MxEncMemOp {
  let EA = (descend /*MODE*/0b111,
                     /*REGISTER*/0b010);

  // 16-bit Displacement
  let Supplement = (operand "$"#opnd_name, 16,
                            (encoder "encodePCRelImm<16>"));
}

class MxEncAddrMode_p<string opnd_name> : MxEncMemOp {
  let EA = (descend /*MODE*/0b101,
                     /*REGISTER*/(operand "$"#opnd_name#".reg", 3));

  // 16-bit Displacement
  let Supplement = (operand "$"#opnd_name#".disp", 16,
                            (encoder "encodeRelocImm<16>"));
}

class MxEncAddrMode_f<string opnd_name> : MxEncMemOp {
  let EA = (descend /*MODE*/0b110,
                     /*REGISTER*/(operand "$"#opnd_name#".reg", 3));

  let Supplement = MxEncBriefExt<opnd_name#".index", opnd_name#".disp",
                                 /*W/L*/true, /*SCALE*/1,
                                 "encodeRelocImm<8>">.Value;
}

class MxEncAddrMode_j<string reg_opnd> : MxEncMemOp {
  let EA = (descend /*MODE*/0b010,
                     /*REGISTER*/(operand "$"#reg_opnd, 3));
}

class MxEncAddrMode_i<string opnd_name, int size> : MxEncMemOp {
  let EA = (descend /*MODE*/0b111,
                     /*REGISTER*/0b100);

  // Immediate
  let Supplement =
    !cond(
      !eq(size, 8)  : (descend 0b00000000, (operand "$"#opnd_name, 8,
	                   (encoder "encodeRelocImm<8>"))),
      !eq(size, 16) : (operand "$"#opnd_name, 16,
                           (encoder "encodeRelocImm<16>")),
      !eq(size, 32) : (operand "$"#opnd_name, 32,
                           (encoder "encodeRelocImm<32>"),
                           (decoder "DecodeImm32"))
    );
}

// abs.W -> size_w_l = false
// abs.L -> size_w_l = true
class MxEncAddrMode_abs<string opnd_name, bit size_w_l = false> : MxEncMemOp {
  let EA = (descend /*MODE*/0b111,
                    // Wrap the REGISTER part in another dag to make sure
                    // the dag assigned to EA only has two arguments. Such
                    // that it's easier for MOV instructions to reverse
                    // on its destination part.
                    /*REGISTER*/(descend 0b00, size_w_l));

  // Absolute address
  let Supplement = !if(size_w_l,
    // abs.L
    (operand "$"#opnd_name, 32, (encoder "encodeRelocImm<32>"),
                                (decoder "DecodeImm32")),
    // abs.W
    (operand "$"#opnd_name, 16, (encoder "encodeRelocImm<16>"))
  );
}

class MxEncAddrMode_o<string reg_opnd> : MxEncMemOp {
  let EA = (descend /*MODE*/0b011,
                    /*REGISTER*/(operand "$"#reg_opnd, 3));
}

class MxEncAddrMode_e<string reg_opnd> : MxEncMemOp {
  let EA = (descend /*MODE*/0b100,
                    /*REGISTER*/(operand "$"#reg_opnd, 3));
}

// Allows you to specify each bit of opcode
class MxEncOpMode<MxBead b0, MxBead b1 = MxBeadIgnore, MxBead b2 = MxBeadIgnore> {
  MxBead B0 = b0;
  MxBead B1 = b1;
  MxBead B2 = b2;
}

// op EA, Dn
def MxOpMode8dEA  : MxEncOpMode<MxBead3Bits<0b000>>;
def MxOpMode16dEA : MxEncOpMode<MxBead3Bits<0b001>>;
def MxOpMode32dEA : MxEncOpMode<MxBead3Bits<0b010>>;

// op EA, An
def MxOpMode16aEA : MxEncOpMode<MxBead3Bits<0b011>>;
def MxOpMode32aEA : MxEncOpMode<MxBead3Bits<0b111>>;

// op EA, Rn
// As you might noticed this guy is special... Since M68k differentiates
// between Data and Address registers we required to use different OPMODE codes
// for Address registers DST operands. One way of dealing with it is to use
// separate tablegen instructions, but in this case it would force Register
// Allocator to use specific Register Classes and eventually will lead to
// superfluous moves. Another approach is to use reg-variadic encoding which will
// change OPMODE base on Register Class used. Luckily, all the bits that differ go
// from 0 to 1 and can be encoded with MxBeadDA.
// Basically, if the register used is of Data type these encodings will be
// the same as MxOpMode{16,32}dEA above and used with regular instructions(e.g. ADD,
// SUB), but if the register is of Address type the appropriate bits will flip and
// the instructions become of *A type(e.g ADDA, SUBA).
def MxOpMode16rEA : MxEncOpMode<MxBead1Bit<1>, MxBeadDA<0>, MxBead1Bit<0>>;
def MxOpMode32rEA : MxEncOpMode<MxBeadDA<0>, MxBead1Bit<1>, MxBeadDA<0>>;

// op Dn, EA
def MxOpMode8EAd : MxEncOpMode<MxBead3Bits<0b100>>;
def MxOpMode16EAd : MxEncOpMode<MxBead3Bits<0b101>>;
def MxOpMode32EAd : MxEncOpMode<MxBead3Bits<0b110>>;


// Represents two types of extension word:
//   - Imm extension word
//   - Brief extension word
class MxEncExt<MxBead imm   = MxBeadIgnore,   MxBead b8 = MxBeadIgnore,
               MxBead scale = MxBeadIgnore, MxBead wl = MxBeadIgnore,
               MxBead daReg = MxBeadIgnore> {
  MxBead Imm = imm;
  MxBead B8 = b8;
  MxBead Scale = scale;
  MxBead WL = wl;
  MxBead DAReg = daReg;
}

def MxExtEmpty : MxEncExt;

// These handle encoding of displacement fields, absolute addresses and
// immediate values, since encoding for these categories is mainly the same,
// with exception of some weird immediates.
def  MxExtI8_0 : MxEncExt<MxBead8Imm<0>>;
def MxExtI16_0 : MxEncExt<MxBead16Imm<0>>;
def MxExtI32_0 : MxEncExt<MxBead32Imm<0>>;

def  MxExtI8_1 : MxEncExt<MxBead8Imm<1>>;
def MxExtI16_1 : MxEncExt<MxBead16Imm<1>>;
def MxExtI32_1 : MxEncExt<MxBead32Imm<1>>;

def  MxExtI8_2 : MxEncExt<MxBead8Imm<2>>;
def MxExtI16_2 : MxEncExt<MxBead16Imm<2>>;
def MxExtI32_2 : MxEncExt<MxBead32Imm<2>>;

// NOTE They are all using Long Xn
def MxExtBrief_0 : MxEncExt<MxBead8Disp<0>, MxBead1Bit<0b0>,
                            MxBead2Bits<0b00>, MxBead1Bit<1>,
                            MxBeadDAReg<0, 1>>;

def MxExtBrief_1 : MxEncExt<MxBead8Disp<1>, MxBead1Bit<0b0>,
                            MxBead2Bits<0b00>, MxBead1Bit<1>,
                            MxBeadDAReg<1, 1>>;

def MxExtBrief_2 : MxEncExt<MxBead8Disp<2>, MxBead1Bit<0b0>,
                            MxBead2Bits<0b00>, MxBead1Bit<1>,
                            MxBeadDAReg<2, 1>>;

def MxExtBrief_3 : MxEncExt<MxBead8Disp<3>, MxBead1Bit<0b0>,
                            MxBead2Bits<0b00>, MxBead1Bit<1>,
                            MxBeadDAReg<3, 1>>;

def MxExtBrief_4 : MxEncExt<MxBead8Disp<4>, MxBead1Bit<0b0>,
                            MxBead2Bits<0b00>, MxBead1Bit<1>,
                            MxBeadDAReg<4, 1>>;

class MxEncSize<bits<2> value> : MxBead2Bits<value>;
def MxEncSize8  : MxEncSize<0b00>;
def MxEncSize16 : MxEncSize<0b01>;
def MxEncSize32 : MxEncSize<0b10>;
def MxEncSize64 : MxEncSize<0b11>;

// TODO: Remove "New" in the name after the codebead-based
// representation is deprecated.
class MxNewEncSize<bits<2> value> {
  bits<2> Value = value;
}
def MxNewEncSize8  : MxNewEncSize<0b00>;
def MxNewEncSize16 : MxNewEncSize<0b01>;
def MxNewEncSize32 : MxNewEncSize<0b10>;
def MxNewEncSize64 : MxNewEncSize<0b11>;

// M68k INSTRUCTION. Most instructions specify the location of an operand by
// using the effective address field in the operation word. The effective address
// is composed of two 3-bit fields: the mode field and the register field. The
// value in the mode field selects the different address modes. The register
// field contains the number of a register.  The effective address field may
// require additional information to fully specify the operand. This additional
// information, called the effective address extension, is contained in the
// following word or words and is considered part of the instruction. The
// effective address modes are grouped into three categories: register direct,
// memory addressing, and special.
class MxInst<dag outs, dag ins,
             string asmStr = "",
             list<dag> pattern = [],
             MxEncoding beads = MxEncEmpty,
             InstrItinClass itin = NoItinerary>
    : Instruction {
  let Namespace      = "M68k";
  let OutOperandList = outs;
  let InOperandList  = ins;
  let AsmString      = asmStr;
  let Pattern        = pattern;
  let Itinerary      = itin;

  // Byte stream
  field bits<192> Beads = beads.Value;
  dag Inst = (ascend);

  // Number of bytes
  let Size = 0;

  let UseLogicalOperandMappings = 1;
}

// M68k PSEUDO INSTRUCTION
class MxPseudo<dag outs, dag ins, list<dag> pattern = []>
    : MxInst<outs, ins, "; error: this should not be emitted", pattern> {
  let isPseudo = 1;
}