1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
//===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the PassManagerBuilder class, which is used to set up a
// "standard" optimization sequence suitable for languages like C and C++.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm-c/Transforms/PassManagerBuilder.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/ScopedNoAliasAA.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Target/CGPassBuilderOption.h"
#include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/Attributor.h"
#include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/IPO/InferFunctionAttrs.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/LICM.h"
#include "llvm/Transforms/Scalar/LoopUnrollPass.h"
#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Vectorize.h"
using namespace llvm;
PassManagerBuilder::PassManagerBuilder() {
OptLevel = 2;
SizeLevel = 0;
LibraryInfo = nullptr;
Inliner = nullptr;
DisableUnrollLoops = false;
SLPVectorize = false;
LoopVectorize = true;
LoopsInterleaved = true;
LicmMssaOptCap = SetLicmMssaOptCap;
LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
DisableGVNLoadPRE = false;
ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
VerifyInput = false;
VerifyOutput = false;
MergeFunctions = false;
DivergentTarget = false;
CallGraphProfile = true;
}
PassManagerBuilder::~PassManagerBuilder() {
delete LibraryInfo;
delete Inliner;
}
void PassManagerBuilder::addInitialAliasAnalysisPasses(
legacy::PassManagerBase &PM) const {
// Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
// BasicAliasAnalysis wins if they disagree. This is intended to help
// support "obvious" type-punning idioms.
PM.add(createTypeBasedAAWrapperPass());
PM.add(createScopedNoAliasAAWrapperPass());
}
void PassManagerBuilder::populateFunctionPassManager(
legacy::FunctionPassManager &FPM) {
// Add LibraryInfo if we have some.
if (LibraryInfo)
FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
if (OptLevel == 0) return;
addInitialAliasAnalysisPasses(FPM);
// Lower llvm.expect to metadata before attempting transforms.
// Compare/branch metadata may alter the behavior of passes like SimplifyCFG.
FPM.add(createLowerExpectIntrinsicPass());
FPM.add(createCFGSimplificationPass());
FPM.add(createSROAPass());
FPM.add(createEarlyCSEPass());
}
void PassManagerBuilder::addFunctionSimplificationPasses(
legacy::PassManagerBase &MPM) {
// Start of function pass.
// Break up aggregate allocas, using SSAUpdater.
assert(OptLevel >= 1 && "Calling function optimizer with no optimization level!");
MPM.add(createSROAPass());
MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies
if (OptLevel > 1) {
// Speculative execution if the target has divergent branches; otherwise nop.
MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
MPM.add(createJumpThreadingPass()); // Thread jumps.
MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
}
MPM.add(
createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
true))); // Merge & remove BBs
// Combine silly seq's
MPM.add(createInstructionCombiningPass());
if (SizeLevel == 0)
MPM.add(createLibCallsShrinkWrapPass());
// TODO: Investigate the cost/benefit of tail call elimination on debugging.
if (OptLevel > 1)
MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
MPM.add(
createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
true))); // Merge & remove BBs
MPM.add(createReassociatePass()); // Reassociate expressions
// Begin the loop pass pipeline.
// The simple loop unswitch pass relies on separate cleanup passes. Schedule
// them first so when we re-process a loop they run before other loop
// passes.
MPM.add(createLoopInstSimplifyPass());
MPM.add(createLoopSimplifyCFGPass());
// Try to remove as much code from the loop header as possible,
// to reduce amount of IR that will have to be duplicated. However,
// do not perform speculative hoisting the first time as LICM
// will destroy metadata that may not need to be destroyed if run
// after loop rotation.
// TODO: Investigate promotion cap for O1.
MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
/*AllowSpeculation=*/false));
// Rotate Loop - disable header duplication at -Oz
MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, false));
// TODO: Investigate promotion cap for O1.
MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
/*AllowSpeculation=*/true));
MPM.add(createSimpleLoopUnswitchLegacyPass(OptLevel == 3));
// FIXME: We break the loop pass pipeline here in order to do full
// simplifycfg. Eventually loop-simplifycfg should be enhanced to replace the
// need for this.
MPM.add(createCFGSimplificationPass(
SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
MPM.add(createInstructionCombiningPass());
// We resume loop passes creating a second loop pipeline here.
MPM.add(createLoopIdiomPass()); // Recognize idioms like memset.
MPM.add(createIndVarSimplifyPass()); // Canonicalize indvars
MPM.add(createLoopDeletionPass()); // Delete dead loops
// Unroll small loops and perform peeling.
MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
ForgetAllSCEVInLoopUnroll));
// This ends the loop pass pipelines.
// Break up allocas that may now be splittable after loop unrolling.
MPM.add(createSROAPass());
if (OptLevel > 1) {
MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
MPM.add(createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
}
MPM.add(createSCCPPass()); // Constant prop with SCCP
// Delete dead bit computations (instcombine runs after to fold away the dead
// computations, and then ADCE will run later to exploit any new DCE
// opportunities that creates).
MPM.add(createBitTrackingDCEPass()); // Delete dead bit computations
// Run instcombine after redundancy elimination to exploit opportunities
// opened up by them.
MPM.add(createInstructionCombiningPass());
if (OptLevel > 1) {
MPM.add(createJumpThreadingPass()); // Thread jumps
MPM.add(createCorrelatedValuePropagationPass());
}
MPM.add(createAggressiveDCEPass()); // Delete dead instructions
MPM.add(createMemCpyOptPass()); // Remove memcpy / form memset
// TODO: Investigate if this is too expensive at O1.
if (OptLevel > 1) {
MPM.add(createDeadStoreEliminationPass()); // Delete dead stores
MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
/*AllowSpeculation=*/true));
}
// Merge & remove BBs and sink & hoist common instructions.
MPM.add(createCFGSimplificationPass(
SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true)));
// Clean up after everything.
MPM.add(createInstructionCombiningPass());
}
/// FIXME: Should LTO cause any differences to this set of passes?
void PassManagerBuilder::addVectorPasses(legacy::PassManagerBase &PM,
bool IsFullLTO) {
PM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize));
if (IsFullLTO) {
// The vectorizer may have significantly shortened a loop body; unroll
// again. Unroll small loops to hide loop backedge latency and saturate any
// parallel execution resources of an out-of-order processor. We also then
// need to clean up redundancies and loop invariant code.
// FIXME: It would be really good to use a loop-integrated instruction
// combiner for cleanup here so that the unrolling and LICM can be pipelined
// across the loop nests.
PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
ForgetAllSCEVInLoopUnroll));
PM.add(createWarnMissedTransformationsPass());
}
if (!IsFullLTO) {
// Eliminate loads by forwarding stores from the previous iteration to loads
// of the current iteration.
PM.add(createLoopLoadEliminationPass());
}
// Cleanup after the loop optimization passes.
PM.add(createInstructionCombiningPass());
// Now that we've formed fast to execute loop structures, we do further
// optimizations. These are run afterward as they might block doing complex
// analyses and transforms such as what are needed for loop vectorization.
// Cleanup after loop vectorization, etc. Simplification passes like CVP and
// GVN, loop transforms, and others have already run, so it's now better to
// convert to more optimized IR using more aggressive simplify CFG options.
// The extra sinking transform can create larger basic blocks, so do this
// before SLP vectorization.
PM.add(createCFGSimplificationPass(SimplifyCFGOptions()
.forwardSwitchCondToPhi(true)
.convertSwitchRangeToICmp(true)
.convertSwitchToLookupTable(true)
.needCanonicalLoops(false)
.hoistCommonInsts(true)
.sinkCommonInsts(true)));
if (IsFullLTO) {
PM.add(createSCCPPass()); // Propagate exposed constants
PM.add(createInstructionCombiningPass()); // Clean up again
PM.add(createBitTrackingDCEPass());
}
// Optimize parallel scalar instruction chains into SIMD instructions.
if (SLPVectorize) {
PM.add(createSLPVectorizerPass());
}
// Enhance/cleanup vector code.
PM.add(createVectorCombinePass());
if (!IsFullLTO) {
PM.add(createInstructionCombiningPass());
// Unroll small loops
PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
ForgetAllSCEVInLoopUnroll));
if (!DisableUnrollLoops) {
// LoopUnroll may generate some redundency to cleanup.
PM.add(createInstructionCombiningPass());
// Runtime unrolling will introduce runtime check in loop prologue. If the
// unrolled loop is a inner loop, then the prologue will be inside the
// outer loop. LICM pass can help to promote the runtime check out if the
// checked value is loop invariant.
PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
/*AllowSpeculation=*/true));
}
PM.add(createWarnMissedTransformationsPass());
}
// After vectorization and unrolling, assume intrinsics may tell us more
// about pointer alignments.
PM.add(createAlignmentFromAssumptionsPass());
if (IsFullLTO)
PM.add(createInstructionCombiningPass());
}
void PassManagerBuilder::populateModulePassManager(
legacy::PassManagerBase &MPM) {
MPM.add(createAnnotation2MetadataLegacyPass());
// Allow forcing function attributes as a debugging and tuning aid.
MPM.add(createForceFunctionAttrsLegacyPass());
// If all optimizations are disabled, just run the always-inline pass and,
// if enabled, the function merging pass.
if (OptLevel == 0) {
if (Inliner) {
MPM.add(Inliner);
Inliner = nullptr;
}
// FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
// creates a CGSCC pass manager, but we don't want to add extensions into
// that pass manager. To prevent this we insert a no-op module pass to reset
// the pass manager to get the same behavior as EP_OptimizerLast in non-O0
// builds. The function merging pass is
if (MergeFunctions)
MPM.add(createMergeFunctionsPass());
return;
}
// Add LibraryInfo if we have some.
if (LibraryInfo)
MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
addInitialAliasAnalysisPasses(MPM);
// Infer attributes about declarations if possible.
MPM.add(createInferFunctionAttrsLegacyPass());
if (OptLevel > 2)
MPM.add(createCallSiteSplittingPass());
MPM.add(createIPSCCPPass()); // IP SCCP
MPM.add(createCalledValuePropagationPass());
MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
// Promote any localized global vars.
MPM.add(createPromoteMemoryToRegisterPass());
MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
MPM.add(createInstructionCombiningPass()); // Clean up after IPCP & DAE
MPM.add(
createCFGSimplificationPass(SimplifyCFGOptions().convertSwitchRangeToICmp(
true))); // Clean up after IPCP & DAE
// We add a module alias analysis pass here. In part due to bugs in the
// analysis infrastructure this "works" in that the analysis stays alive
// for the entire SCC pass run below.
MPM.add(createGlobalsAAWrapperPass());
// Start of CallGraph SCC passes.
bool RunInliner = false;
if (Inliner) {
MPM.add(Inliner);
Inliner = nullptr;
RunInliner = true;
}
MPM.add(createPostOrderFunctionAttrsLegacyPass());
addFunctionSimplificationPasses(MPM);
// FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
// pass manager that we are specifically trying to avoid. To prevent this
// we must insert a no-op module pass to reset the pass manager.
MPM.add(createBarrierNoopPass());
if (OptLevel > 1)
// Remove avail extern fns and globals definitions if we aren't
// compiling an object file for later LTO. For LTO we want to preserve
// these so they are eligible for inlining at link-time. Note if they
// are unreferenced they will be removed by GlobalDCE later, so
// this only impacts referenced available externally globals.
// Eventually they will be suppressed during codegen, but eliminating
// here enables more opportunity for GlobalDCE as it may make
// globals referenced by available external functions dead
// and saves running remaining passes on the eliminated functions.
MPM.add(createEliminateAvailableExternallyPass());
MPM.add(createReversePostOrderFunctionAttrsPass());
// The inliner performs some kind of dead code elimination as it goes,
// but there are cases that are not really caught by it. We might
// at some point consider teaching the inliner about them, but it
// is OK for now to run GlobalOpt + GlobalDCE in tandem as their
// benefits generally outweight the cost, making the whole pipeline
// faster.
if (RunInliner) {
MPM.add(createGlobalOptimizerPass());
MPM.add(createGlobalDCEPass());
}
// We add a fresh GlobalsModRef run at this point. This is particularly
// useful as the above will have inlined, DCE'ed, and function-attr
// propagated everything. We should at this point have a reasonably minimal
// and richly annotated call graph. By computing aliasing and mod/ref
// information for all local globals here, the late loop passes and notably
// the vectorizer will be able to use them to help recognize vectorizable
// memory operations.
//
// Note that this relies on a bug in the pass manager which preserves
// a module analysis into a function pass pipeline (and throughout it) so
// long as the first function pass doesn't invalidate the module analysis.
// Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
// this to work. Fortunately, it is trivial to preserve AliasAnalysis
// (doing nothing preserves it as it is required to be conservatively
// correct in the face of IR changes).
MPM.add(createGlobalsAAWrapperPass());
MPM.add(createFloat2IntPass());
MPM.add(createLowerConstantIntrinsicsPass());
// Re-rotate loops in all our loop nests. These may have fallout out of
// rotated form due to GVN or other transformations, and the vectorizer relies
// on the rotated form. Disable header duplication at -Oz.
MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1, false));
// Distribute loops to allow partial vectorization. I.e. isolate dependences
// into separate loop that would otherwise inhibit vectorization. This is
// currently only performed for loops marked with the metadata
// llvm.loop.distribute=true or when -enable-loop-distribute is specified.
MPM.add(createLoopDistributePass());
addVectorPasses(MPM, /* IsFullLTO */ false);
// FIXME: We shouldn't bother with this anymore.
MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
// GlobalOpt already deletes dead functions and globals, at -O2 try a
// late pass of GlobalDCE. It is capable of deleting dead cycles.
if (OptLevel > 1) {
MPM.add(createGlobalDCEPass()); // Remove dead fns and globals.
MPM.add(createConstantMergePass()); // Merge dup global constants
}
if (MergeFunctions)
MPM.add(createMergeFunctionsPass());
// LoopSink pass sinks instructions hoisted by LICM, which serves as a
// canonicalization pass that enables other optimizations. As a result,
// LoopSink pass needs to be a very late IR pass to avoid undoing LICM
// result too early.
MPM.add(createLoopSinkPass());
// Get rid of LCSSA nodes.
MPM.add(createInstSimplifyLegacyPass());
// This hoists/decomposes div/rem ops. It should run after other sink/hoist
// passes to avoid re-sinking, but before SimplifyCFG because it can allow
// flattening of blocks.
MPM.add(createDivRemPairsPass());
// LoopSink (and other loop passes since the last simplifyCFG) might have
// resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
MPM.add(createCFGSimplificationPass(
SimplifyCFGOptions().convertSwitchRangeToICmp(true)));
}
LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
PassManagerBuilder *PMB = new PassManagerBuilder();
return wrap(PMB);
}
void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
PassManagerBuilder *Builder = unwrap(PMB);
delete Builder;
}
void
LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
unsigned OptLevel) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->OptLevel = OptLevel;
}
void
LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
unsigned SizeLevel) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->SizeLevel = SizeLevel;
}
void
LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
LLVMBool Value) {
// NOTE: The DisableUnitAtATime switch has been removed.
}
void
LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
LLVMBool Value) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->DisableUnrollLoops = Value;
}
void
LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
LLVMBool Value) {
// NOTE: The simplify-libcalls pass has been removed.
}
void
LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
unsigned Threshold) {
PassManagerBuilder *Builder = unwrap(PMB);
Builder->Inliner = createFunctionInliningPass(Threshold);
}
void
LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
LLVMPassManagerRef PM) {
PassManagerBuilder *Builder = unwrap(PMB);
legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
Builder->populateFunctionPassManager(*FPM);
}
void
LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
LLVMPassManagerRef PM) {
PassManagerBuilder *Builder = unwrap(PMB);
legacy::PassManagerBase *MPM = unwrap(PM);
Builder->populateModulePassManager(*MPM);
}
|