1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
|
//===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Eliminate conditions based on constraints collected from dominating
// conditions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/ConstraintElimination.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ConstraintSystem.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/MathExtras.h"
#include <cmath>
#include <string>
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "constraint-elimination"
STATISTIC(NumCondsRemoved, "Number of instructions removed");
DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
"Controls which conditions are eliminated");
static cl::opt<unsigned>
MaxRows("constraint-elimination-max-rows", cl::init(500), cl::Hidden,
cl::desc("Maximum number of rows to keep in constraint system"));
static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
static int64_t MinSignedConstraintValue = std::numeric_limits<int64_t>::min();
// A helper to multiply 2 signed integers where overflowing is allowed.
static int64_t multiplyWithOverflow(int64_t A, int64_t B) {
int64_t Result;
MulOverflow(A, B, Result);
return Result;
}
// A helper to add 2 signed integers where overflowing is allowed.
static int64_t addWithOverflow(int64_t A, int64_t B) {
int64_t Result;
AddOverflow(A, B, Result);
return Result;
}
namespace {
class ConstraintInfo;
struct StackEntry {
unsigned NumIn;
unsigned NumOut;
bool IsSigned = false;
/// Variables that can be removed from the system once the stack entry gets
/// removed.
SmallVector<Value *, 2> ValuesToRelease;
StackEntry(unsigned NumIn, unsigned NumOut, bool IsSigned,
SmallVector<Value *, 2> ValuesToRelease)
: NumIn(NumIn), NumOut(NumOut), IsSigned(IsSigned),
ValuesToRelease(ValuesToRelease) {}
};
/// Struct to express a pre-condition of the form %Op0 Pred %Op1.
struct PreconditionTy {
CmpInst::Predicate Pred;
Value *Op0;
Value *Op1;
PreconditionTy(CmpInst::Predicate Pred, Value *Op0, Value *Op1)
: Pred(Pred), Op0(Op0), Op1(Op1) {}
};
struct ConstraintTy {
SmallVector<int64_t, 8> Coefficients;
SmallVector<PreconditionTy, 2> Preconditions;
SmallVector<SmallVector<int64_t, 8>> ExtraInfo;
bool IsSigned = false;
bool IsEq = false;
ConstraintTy() = default;
ConstraintTy(SmallVector<int64_t, 8> Coefficients, bool IsSigned)
: Coefficients(Coefficients), IsSigned(IsSigned) {}
unsigned size() const { return Coefficients.size(); }
unsigned empty() const { return Coefficients.empty(); }
/// Returns true if all preconditions for this list of constraints are
/// satisfied given \p CS and the corresponding \p Value2Index mapping.
bool isValid(const ConstraintInfo &Info) const;
};
/// Wrapper encapsulating separate constraint systems and corresponding value
/// mappings for both unsigned and signed information. Facts are added to and
/// conditions are checked against the corresponding system depending on the
/// signed-ness of their predicates. While the information is kept separate
/// based on signed-ness, certain conditions can be transferred between the two
/// systems.
class ConstraintInfo {
DenseMap<Value *, unsigned> UnsignedValue2Index;
DenseMap<Value *, unsigned> SignedValue2Index;
ConstraintSystem UnsignedCS;
ConstraintSystem SignedCS;
const DataLayout &DL;
public:
ConstraintInfo(const DataLayout &DL) : DL(DL) {}
DenseMap<Value *, unsigned> &getValue2Index(bool Signed) {
return Signed ? SignedValue2Index : UnsignedValue2Index;
}
const DenseMap<Value *, unsigned> &getValue2Index(bool Signed) const {
return Signed ? SignedValue2Index : UnsignedValue2Index;
}
ConstraintSystem &getCS(bool Signed) {
return Signed ? SignedCS : UnsignedCS;
}
const ConstraintSystem &getCS(bool Signed) const {
return Signed ? SignedCS : UnsignedCS;
}
void popLastConstraint(bool Signed) { getCS(Signed).popLastConstraint(); }
void popLastNVariables(bool Signed, unsigned N) {
getCS(Signed).popLastNVariables(N);
}
bool doesHold(CmpInst::Predicate Pred, Value *A, Value *B) const;
void addFact(CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack);
/// Turn a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
/// constraints, using indices from the corresponding constraint system.
/// New variables that need to be added to the system are collected in
/// \p NewVariables.
ConstraintTy getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
SmallVectorImpl<Value *> &NewVariables) const;
/// Turns a comparison of the form \p Op0 \p Pred \p Op1 into a vector of
/// constraints using getConstraint. Returns an empty constraint if the result
/// cannot be used to query the existing constraint system, e.g. because it
/// would require adding new variables. Also tries to convert signed
/// predicates to unsigned ones if possible to allow using the unsigned system
/// which increases the effectiveness of the signed <-> unsigned transfer
/// logic.
ConstraintTy getConstraintForSolving(CmpInst::Predicate Pred, Value *Op0,
Value *Op1) const;
/// Try to add information from \p A \p Pred \p B to the unsigned/signed
/// system if \p Pred is signed/unsigned.
void transferToOtherSystem(CmpInst::Predicate Pred, Value *A, Value *B,
unsigned NumIn, unsigned NumOut,
SmallVectorImpl<StackEntry> &DFSInStack);
};
/// Represents a (Coefficient * Variable) entry after IR decomposition.
struct DecompEntry {
int64_t Coefficient;
Value *Variable;
/// True if the variable is known positive in the current constraint.
bool IsKnownNonNegative;
DecompEntry(int64_t Coefficient, Value *Variable,
bool IsKnownNonNegative = false)
: Coefficient(Coefficient), Variable(Variable),
IsKnownNonNegative(IsKnownNonNegative) {}
};
/// Represents an Offset + Coefficient1 * Variable1 + ... decomposition.
struct Decomposition {
int64_t Offset = 0;
SmallVector<DecompEntry, 3> Vars;
Decomposition(int64_t Offset) : Offset(Offset) {}
Decomposition(Value *V, bool IsKnownNonNegative = false) {
Vars.emplace_back(1, V, IsKnownNonNegative);
}
Decomposition(int64_t Offset, ArrayRef<DecompEntry> Vars)
: Offset(Offset), Vars(Vars) {}
void add(int64_t OtherOffset) {
Offset = addWithOverflow(Offset, OtherOffset);
}
void add(const Decomposition &Other) {
add(Other.Offset);
append_range(Vars, Other.Vars);
}
void mul(int64_t Factor) {
Offset = multiplyWithOverflow(Offset, Factor);
for (auto &Var : Vars)
Var.Coefficient = multiplyWithOverflow(Var.Coefficient, Factor);
}
};
} // namespace
static Decomposition decompose(Value *V,
SmallVectorImpl<PreconditionTy> &Preconditions,
bool IsSigned, const DataLayout &DL);
static bool canUseSExt(ConstantInt *CI) {
const APInt &Val = CI->getValue();
return Val.sgt(MinSignedConstraintValue) && Val.slt(MaxConstraintValue);
}
static Decomposition
decomposeGEP(GetElementPtrInst &GEP,
SmallVectorImpl<PreconditionTy> &Preconditions, bool IsSigned,
const DataLayout &DL) {
// Do not reason about pointers where the index size is larger than 64 bits,
// as the coefficients used to encode constraints are 64 bit integers.
if (DL.getIndexTypeSizeInBits(GEP.getPointerOperand()->getType()) > 64)
return &GEP;
if (!GEP.isInBounds())
return &GEP;
assert(!IsSigned && "The logic below only supports decomposition for "
"unsinged predicates at the moment.");
Type *PtrTy = GEP.getType()->getScalarType();
unsigned BitWidth = DL.getIndexTypeSizeInBits(PtrTy);
MapVector<Value *, APInt> VariableOffsets;
APInt ConstantOffset(BitWidth, 0);
if (!GEP.collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
return &GEP;
// Handle the (gep (gep ....), C) case by incrementing the constant
// coefficient of the inner GEP, if C is a constant.
auto *InnerGEP = dyn_cast<GetElementPtrInst>(GEP.getPointerOperand());
if (VariableOffsets.empty() && InnerGEP && InnerGEP->getNumOperands() == 2) {
auto Result = decompose(InnerGEP, Preconditions, IsSigned, DL);
Result.add(ConstantOffset.getSExtValue());
if (ConstantOffset.isNegative()) {
unsigned Scale = DL.getTypeAllocSize(InnerGEP->getResultElementType());
int64_t ConstantOffsetI = ConstantOffset.getSExtValue();
if (ConstantOffsetI % Scale != 0)
return &GEP;
// Add pre-condition ensuring the GEP is increasing monotonically and
// can be de-composed.
// Both sides are normalized by being divided by Scale.
Preconditions.emplace_back(
CmpInst::ICMP_SGE, InnerGEP->getOperand(1),
ConstantInt::get(InnerGEP->getOperand(1)->getType(),
-1 * (ConstantOffsetI / Scale)));
}
return Result;
}
Decomposition Result(ConstantOffset.getSExtValue(),
DecompEntry(1, GEP.getPointerOperand()));
for (auto [Index, Scale] : VariableOffsets) {
auto IdxResult = decompose(Index, Preconditions, IsSigned, DL);
IdxResult.mul(Scale.getSExtValue());
Result.add(IdxResult);
// If Op0 is signed non-negative, the GEP is increasing monotonically and
// can be de-composed.
if (!isKnownNonNegative(Index, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
Preconditions.emplace_back(CmpInst::ICMP_SGE, Index,
ConstantInt::get(Index->getType(), 0));
}
return Result;
}
// Decomposes \p V into a constant offset + list of pairs { Coefficient,
// Variable } where Coefficient * Variable. The sum of the constant offset and
// pairs equals \p V.
static Decomposition decompose(Value *V,
SmallVectorImpl<PreconditionTy> &Preconditions,
bool IsSigned, const DataLayout &DL) {
auto MergeResults = [&Preconditions, IsSigned, &DL](Value *A, Value *B,
bool IsSignedB) {
auto ResA = decompose(A, Preconditions, IsSigned, DL);
auto ResB = decompose(B, Preconditions, IsSignedB, DL);
ResA.add(ResB);
return ResA;
};
// Decompose \p V used with a signed predicate.
if (IsSigned) {
if (auto *CI = dyn_cast<ConstantInt>(V)) {
if (canUseSExt(CI))
return CI->getSExtValue();
}
Value *Op0;
Value *Op1;
if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1))))
return MergeResults(Op0, Op1, IsSigned);
return V;
}
if (auto *CI = dyn_cast<ConstantInt>(V)) {
if (CI->uge(MaxConstraintValue))
return V;
return int64_t(CI->getZExtValue());
}
if (auto *GEP = dyn_cast<GetElementPtrInst>(V))
return decomposeGEP(*GEP, Preconditions, IsSigned, DL);
Value *Op0;
bool IsKnownNonNegative = false;
if (match(V, m_ZExt(m_Value(Op0)))) {
IsKnownNonNegative = true;
V = Op0;
}
Value *Op1;
ConstantInt *CI;
if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1)))) {
return MergeResults(Op0, Op1, IsSigned);
}
if (match(V, m_NSWAdd(m_Value(Op0), m_Value(Op1)))) {
if (!isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
Preconditions.emplace_back(CmpInst::ICMP_SGE, Op0,
ConstantInt::get(Op0->getType(), 0));
if (!isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
Preconditions.emplace_back(CmpInst::ICMP_SGE, Op1,
ConstantInt::get(Op1->getType(), 0));
return MergeResults(Op0, Op1, IsSigned);
}
if (match(V, m_Add(m_Value(Op0), m_ConstantInt(CI))) && CI->isNegative() &&
canUseSExt(CI)) {
Preconditions.emplace_back(
CmpInst::ICMP_UGE, Op0,
ConstantInt::get(Op0->getType(), CI->getSExtValue() * -1));
return MergeResults(Op0, CI, true);
}
if (match(V, m_NUWShl(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI)) {
int64_t Mult = int64_t(std::pow(int64_t(2), CI->getSExtValue()));
auto Result = decompose(Op1, Preconditions, IsSigned, DL);
Result.mul(Mult);
return Result;
}
if (match(V, m_NUWMul(m_Value(Op1), m_ConstantInt(CI))) && canUseSExt(CI) &&
(!CI->isNegative())) {
auto Result = decompose(Op1, Preconditions, IsSigned, DL);
Result.mul(CI->getSExtValue());
return Result;
}
if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))) && canUseSExt(CI))
return {-1 * CI->getSExtValue(), {{1, Op0}}};
if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
return {0, {{1, Op0}, {-1, Op1}}};
return {V, IsKnownNonNegative};
}
ConstraintTy
ConstraintInfo::getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
SmallVectorImpl<Value *> &NewVariables) const {
assert(NewVariables.empty() && "NewVariables must be empty when passed in");
bool IsEq = false;
// Try to convert Pred to one of ULE/SLT/SLE/SLT.
switch (Pred) {
case CmpInst::ICMP_UGT:
case CmpInst::ICMP_UGE:
case CmpInst::ICMP_SGT:
case CmpInst::ICMP_SGE: {
Pred = CmpInst::getSwappedPredicate(Pred);
std::swap(Op0, Op1);
break;
}
case CmpInst::ICMP_EQ:
if (match(Op1, m_Zero())) {
Pred = CmpInst::ICMP_ULE;
} else {
IsEq = true;
Pred = CmpInst::ICMP_ULE;
}
break;
case CmpInst::ICMP_NE:
if (!match(Op1, m_Zero()))
return {};
Pred = CmpInst::getSwappedPredicate(CmpInst::ICMP_UGT);
std::swap(Op0, Op1);
break;
default:
break;
}
if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT &&
Pred != CmpInst::ICMP_SLE && Pred != CmpInst::ICMP_SLT)
return {};
SmallVector<PreconditionTy, 4> Preconditions;
bool IsSigned = CmpInst::isSigned(Pred);
auto &Value2Index = getValue2Index(IsSigned);
auto ADec = decompose(Op0->stripPointerCastsSameRepresentation(),
Preconditions, IsSigned, DL);
auto BDec = decompose(Op1->stripPointerCastsSameRepresentation(),
Preconditions, IsSigned, DL);
int64_t Offset1 = ADec.Offset;
int64_t Offset2 = BDec.Offset;
Offset1 *= -1;
auto &VariablesA = ADec.Vars;
auto &VariablesB = BDec.Vars;
// First try to look up \p V in Value2Index and NewVariables. Otherwise add a
// new entry to NewVariables.
DenseMap<Value *, unsigned> NewIndexMap;
auto GetOrAddIndex = [&Value2Index, &NewVariables,
&NewIndexMap](Value *V) -> unsigned {
auto V2I = Value2Index.find(V);
if (V2I != Value2Index.end())
return V2I->second;
auto Insert =
NewIndexMap.insert({V, Value2Index.size() + NewVariables.size() + 1});
if (Insert.second)
NewVariables.push_back(V);
return Insert.first->second;
};
// Make sure all variables have entries in Value2Index or NewVariables.
for (const auto &KV : concat<DecompEntry>(VariablesA, VariablesB))
GetOrAddIndex(KV.Variable);
// Build result constraint, by first adding all coefficients from A and then
// subtracting all coefficients from B.
ConstraintTy Res(
SmallVector<int64_t, 8>(Value2Index.size() + NewVariables.size() + 1, 0),
IsSigned);
// Collect variables that are known to be positive in all uses in the
// constraint.
DenseMap<Value *, bool> KnownNonNegativeVariables;
Res.IsEq = IsEq;
auto &R = Res.Coefficients;
for (const auto &KV : VariablesA) {
R[GetOrAddIndex(KV.Variable)] += KV.Coefficient;
auto I =
KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
I.first->second &= KV.IsKnownNonNegative;
}
for (const auto &KV : VariablesB) {
R[GetOrAddIndex(KV.Variable)] -= KV.Coefficient;
auto I =
KnownNonNegativeVariables.insert({KV.Variable, KV.IsKnownNonNegative});
I.first->second &= KV.IsKnownNonNegative;
}
int64_t OffsetSum;
if (AddOverflow(Offset1, Offset2, OffsetSum))
return {};
if (Pred == (IsSigned ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT))
if (AddOverflow(OffsetSum, int64_t(-1), OffsetSum))
return {};
R[0] = OffsetSum;
Res.Preconditions = std::move(Preconditions);
// Remove any (Coefficient, Variable) entry where the Coefficient is 0 for new
// variables.
while (!NewVariables.empty()) {
int64_t Last = R.back();
if (Last != 0)
break;
R.pop_back();
Value *RemovedV = NewVariables.pop_back_val();
NewIndexMap.erase(RemovedV);
}
// Add extra constraints for variables that are known positive.
for (auto &KV : KnownNonNegativeVariables) {
if (!KV.second || (Value2Index.find(KV.first) == Value2Index.end() &&
NewIndexMap.find(KV.first) == NewIndexMap.end()))
continue;
SmallVector<int64_t, 8> C(Value2Index.size() + NewVariables.size() + 1, 0);
C[GetOrAddIndex(KV.first)] = -1;
Res.ExtraInfo.push_back(C);
}
return Res;
}
ConstraintTy ConstraintInfo::getConstraintForSolving(CmpInst::Predicate Pred,
Value *Op0,
Value *Op1) const {
// If both operands are known to be non-negative, change signed predicates to
// unsigned ones. This increases the reasoning effectiveness in combination
// with the signed <-> unsigned transfer logic.
if (CmpInst::isSigned(Pred) &&
isKnownNonNegative(Op0, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1) &&
isKnownNonNegative(Op1, DL, /*Depth=*/MaxAnalysisRecursionDepth - 1))
Pred = CmpInst::getUnsignedPredicate(Pred);
SmallVector<Value *> NewVariables;
ConstraintTy R = getConstraint(Pred, Op0, Op1, NewVariables);
if (R.IsEq || !NewVariables.empty())
return {};
return R;
}
bool ConstraintTy::isValid(const ConstraintInfo &Info) const {
return Coefficients.size() > 0 &&
all_of(Preconditions, [&Info](const PreconditionTy &C) {
return Info.doesHold(C.Pred, C.Op0, C.Op1);
});
}
bool ConstraintInfo::doesHold(CmpInst::Predicate Pred, Value *A,
Value *B) const {
auto R = getConstraintForSolving(Pred, A, B);
return R.Preconditions.empty() && !R.empty() &&
getCS(R.IsSigned).isConditionImplied(R.Coefficients);
}
void ConstraintInfo::transferToOtherSystem(
CmpInst::Predicate Pred, Value *A, Value *B, unsigned NumIn,
unsigned NumOut, SmallVectorImpl<StackEntry> &DFSInStack) {
// Check if we can combine facts from the signed and unsigned systems to
// derive additional facts.
if (!A->getType()->isIntegerTy())
return;
// FIXME: This currently depends on the order we add facts. Ideally we
// would first add all known facts and only then try to add additional
// facts.
switch (Pred) {
default:
break;
case CmpInst::ICMP_ULT:
// If B is a signed positive constant, A >=s 0 and A <s B.
if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
addFact(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0), NumIn,
NumOut, DFSInStack);
addFact(CmpInst::ICMP_SLT, A, B, NumIn, NumOut, DFSInStack);
}
break;
case CmpInst::ICMP_SLT:
if (doesHold(CmpInst::ICMP_SGE, A, ConstantInt::get(B->getType(), 0)))
addFact(CmpInst::ICMP_ULT, A, B, NumIn, NumOut, DFSInStack);
break;
case CmpInst::ICMP_SGT:
if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), -1)))
addFact(CmpInst::ICMP_UGE, A, ConstantInt::get(B->getType(), 0), NumIn,
NumOut, DFSInStack);
break;
case CmpInst::ICMP_SGE:
if (doesHold(CmpInst::ICMP_SGE, B, ConstantInt::get(B->getType(), 0))) {
addFact(CmpInst::ICMP_UGE, A, B, NumIn, NumOut, DFSInStack);
}
break;
}
}
namespace {
/// Represents either
/// * a condition that holds on entry to a block (=conditional fact)
/// * an assume (=assume fact)
/// * an instruction to simplify.
/// It also tracks the Dominator DFS in and out numbers for each entry.
struct FactOrCheck {
Instruction *Inst;
unsigned NumIn;
unsigned NumOut;
bool IsCheck;
bool Not;
FactOrCheck(DomTreeNode *DTN, Instruction *Inst, bool IsCheck, bool Not)
: Inst(Inst), NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()),
IsCheck(IsCheck), Not(Not) {}
static FactOrCheck getFact(DomTreeNode *DTN, Instruction *Inst,
bool Not = false) {
return FactOrCheck(DTN, Inst, false, Not);
}
static FactOrCheck getCheck(DomTreeNode *DTN, Instruction *Inst) {
return FactOrCheck(DTN, Inst, true, false);
}
bool isAssumeFact() const {
if (!IsCheck && isa<IntrinsicInst>(Inst)) {
assert(match(Inst, m_Intrinsic<Intrinsic::assume>()));
return true;
}
return false;
}
bool isConditionFact() const { return !IsCheck && isa<CmpInst>(Inst); }
};
/// Keep state required to build worklist.
struct State {
DominatorTree &DT;
SmallVector<FactOrCheck, 64> WorkList;
State(DominatorTree &DT) : DT(DT) {}
/// Process block \p BB and add known facts to work-list.
void addInfoFor(BasicBlock &BB);
/// Returns true if we can add a known condition from BB to its successor
/// block Succ.
bool canAddSuccessor(BasicBlock &BB, BasicBlock *Succ) const {
return DT.dominates(BasicBlockEdge(&BB, Succ), Succ);
}
};
} // namespace
#ifndef NDEBUG
static void dumpWithNames(const ConstraintSystem &CS,
DenseMap<Value *, unsigned> &Value2Index) {
SmallVector<std::string> Names(Value2Index.size(), "");
for (auto &KV : Value2Index) {
Names[KV.second - 1] = std::string("%") + KV.first->getName().str();
}
CS.dump(Names);
}
static void dumpWithNames(ArrayRef<int64_t> C,
DenseMap<Value *, unsigned> &Value2Index) {
ConstraintSystem CS;
CS.addVariableRowFill(C);
dumpWithNames(CS, Value2Index);
}
#endif
void State::addInfoFor(BasicBlock &BB) {
// True as long as long as the current instruction is guaranteed to execute.
bool GuaranteedToExecute = true;
// Queue conditions and assumes.
for (Instruction &I : BB) {
if (auto Cmp = dyn_cast<ICmpInst>(&I)) {
WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), Cmp));
continue;
}
if (match(&I, m_Intrinsic<Intrinsic::ssub_with_overflow>())) {
WorkList.push_back(FactOrCheck::getCheck(DT.getNode(&BB), &I));
continue;
}
Value *Cond;
// For now, just handle assumes with a single compare as condition.
if (match(&I, m_Intrinsic<Intrinsic::assume>(m_Value(Cond))) &&
isa<ICmpInst>(Cond)) {
if (GuaranteedToExecute) {
// The assume is guaranteed to execute when BB is entered, hence Cond
// holds on entry to BB.
WorkList.emplace_back(FactOrCheck::getFact(DT.getNode(I.getParent()),
cast<Instruction>(Cond)));
} else {
WorkList.emplace_back(
FactOrCheck::getFact(DT.getNode(I.getParent()), &I));
}
}
GuaranteedToExecute &= isGuaranteedToTransferExecutionToSuccessor(&I);
}
auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
if (!Br || !Br->isConditional())
return;
Value *Cond = Br->getCondition();
// If the condition is a chain of ORs/AND and the successor only has the
// current block as predecessor, queue conditions for the successor.
Value *Op0, *Op1;
if (match(Cond, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
match(Cond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
bool IsOr = match(Cond, m_LogicalOr());
bool IsAnd = match(Cond, m_LogicalAnd());
// If there's a select that matches both AND and OR, we need to commit to
// one of the options. Arbitrarily pick OR.
if (IsOr && IsAnd)
IsAnd = false;
BasicBlock *Successor = Br->getSuccessor(IsOr ? 1 : 0);
if (canAddSuccessor(BB, Successor)) {
SmallVector<Value *> CondWorkList;
SmallPtrSet<Value *, 8> SeenCond;
auto QueueValue = [&CondWorkList, &SeenCond](Value *V) {
if (SeenCond.insert(V).second)
CondWorkList.push_back(V);
};
QueueValue(Op1);
QueueValue(Op0);
while (!CondWorkList.empty()) {
Value *Cur = CondWorkList.pop_back_val();
if (auto *Cmp = dyn_cast<ICmpInst>(Cur)) {
WorkList.emplace_back(
FactOrCheck::getFact(DT.getNode(Successor), Cmp, IsOr));
continue;
}
if (IsOr && match(Cur, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
QueueValue(Op1);
QueueValue(Op0);
continue;
}
if (IsAnd && match(Cur, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
QueueValue(Op1);
QueueValue(Op0);
continue;
}
}
}
return;
}
auto *CmpI = dyn_cast<ICmpInst>(Br->getCondition());
if (!CmpI)
return;
if (canAddSuccessor(BB, Br->getSuccessor(0)))
WorkList.emplace_back(
FactOrCheck::getFact(DT.getNode(Br->getSuccessor(0)), CmpI));
if (canAddSuccessor(BB, Br->getSuccessor(1)))
WorkList.emplace_back(
FactOrCheck::getFact(DT.getNode(Br->getSuccessor(1)), CmpI, true));
}
static bool checkAndReplaceCondition(CmpInst *Cmp, ConstraintInfo &Info) {
LLVM_DEBUG(dbgs() << "Checking " << *Cmp << "\n");
CmpInst::Predicate Pred = Cmp->getPredicate();
Value *A = Cmp->getOperand(0);
Value *B = Cmp->getOperand(1);
auto R = Info.getConstraintForSolving(Pred, A, B);
if (R.empty() || !R.isValid(Info)){
LLVM_DEBUG(dbgs() << " failed to decompose condition\n");
return false;
}
auto &CSToUse = Info.getCS(R.IsSigned);
// If there was extra information collected during decomposition, apply
// it now and remove it immediately once we are done with reasoning
// about the constraint.
for (auto &Row : R.ExtraInfo)
CSToUse.addVariableRow(Row);
auto InfoRestorer = make_scope_exit([&]() {
for (unsigned I = 0; I < R.ExtraInfo.size(); ++I)
CSToUse.popLastConstraint();
});
bool Changed = false;
if (CSToUse.isConditionImplied(R.Coefficients)) {
if (!DebugCounter::shouldExecute(EliminatedCounter))
return false;
LLVM_DEBUG({
dbgs() << "Condition " << *Cmp << " implied by dominating constraints\n";
dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
});
Constant *TrueC =
ConstantInt::getTrue(CmpInst::makeCmpResultType(Cmp->getType()));
Cmp->replaceUsesWithIf(TrueC, [](Use &U) {
// Conditions in an assume trivially simplify to true. Skip uses
// in assume calls to not destroy the available information.
auto *II = dyn_cast<IntrinsicInst>(U.getUser());
return !II || II->getIntrinsicID() != Intrinsic::assume;
});
NumCondsRemoved++;
Changed = true;
}
if (CSToUse.isConditionImplied(ConstraintSystem::negate(R.Coefficients))) {
if (!DebugCounter::shouldExecute(EliminatedCounter))
return false;
LLVM_DEBUG({
dbgs() << "Condition !" << *Cmp << " implied by dominating constraints\n";
dumpWithNames(CSToUse, Info.getValue2Index(R.IsSigned));
});
Constant *FalseC =
ConstantInt::getFalse(CmpInst::makeCmpResultType(Cmp->getType()));
Cmp->replaceAllUsesWith(FalseC);
NumCondsRemoved++;
Changed = true;
}
return Changed;
}
void ConstraintInfo::addFact(CmpInst::Predicate Pred, Value *A, Value *B,
unsigned NumIn, unsigned NumOut,
SmallVectorImpl<StackEntry> &DFSInStack) {
// If the constraint has a pre-condition, skip the constraint if it does not
// hold.
SmallVector<Value *> NewVariables;
auto R = getConstraint(Pred, A, B, NewVariables);
if (!R.isValid(*this))
return;
LLVM_DEBUG(dbgs() << "Adding '" << CmpInst::getPredicateName(Pred) << " ";
A->printAsOperand(dbgs(), false); dbgs() << ", ";
B->printAsOperand(dbgs(), false); dbgs() << "'\n");
bool Added = false;
auto &CSToUse = getCS(R.IsSigned);
if (R.Coefficients.empty())
return;
Added |= CSToUse.addVariableRowFill(R.Coefficients);
// If R has been added to the system, add the new variables and queue it for
// removal once it goes out-of-scope.
if (Added) {
SmallVector<Value *, 2> ValuesToRelease;
auto &Value2Index = getValue2Index(R.IsSigned);
for (Value *V : NewVariables) {
Value2Index.insert({V, Value2Index.size() + 1});
ValuesToRelease.push_back(V);
}
LLVM_DEBUG({
dbgs() << " constraint: ";
dumpWithNames(R.Coefficients, getValue2Index(R.IsSigned));
dbgs() << "\n";
});
DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
std::move(ValuesToRelease));
if (R.IsEq) {
// Also add the inverted constraint for equality constraints.
for (auto &Coeff : R.Coefficients)
Coeff *= -1;
CSToUse.addVariableRowFill(R.Coefficients);
DFSInStack.emplace_back(NumIn, NumOut, R.IsSigned,
SmallVector<Value *, 2>());
}
}
}
static bool replaceSubOverflowUses(IntrinsicInst *II, Value *A, Value *B,
SmallVectorImpl<Instruction *> &ToRemove) {
bool Changed = false;
IRBuilder<> Builder(II->getParent(), II->getIterator());
Value *Sub = nullptr;
for (User *U : make_early_inc_range(II->users())) {
if (match(U, m_ExtractValue<0>(m_Value()))) {
if (!Sub)
Sub = Builder.CreateSub(A, B);
U->replaceAllUsesWith(Sub);
Changed = true;
} else if (match(U, m_ExtractValue<1>(m_Value()))) {
U->replaceAllUsesWith(Builder.getFalse());
Changed = true;
} else
continue;
if (U->use_empty()) {
auto *I = cast<Instruction>(U);
ToRemove.push_back(I);
I->setOperand(0, PoisonValue::get(II->getType()));
Changed = true;
}
}
if (II->use_empty()) {
II->eraseFromParent();
Changed = true;
}
return Changed;
}
static bool
tryToSimplifyOverflowMath(IntrinsicInst *II, ConstraintInfo &Info,
SmallVectorImpl<Instruction *> &ToRemove) {
auto DoesConditionHold = [](CmpInst::Predicate Pred, Value *A, Value *B,
ConstraintInfo &Info) {
auto R = Info.getConstraintForSolving(Pred, A, B);
if (R.size() < 2 || !R.isValid(Info))
return false;
auto &CSToUse = Info.getCS(R.IsSigned);
return CSToUse.isConditionImplied(R.Coefficients);
};
bool Changed = false;
if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow) {
// If A s>= B && B s>= 0, ssub.with.overflow(a, b) should not overflow and
// can be simplified to a regular sub.
Value *A = II->getArgOperand(0);
Value *B = II->getArgOperand(1);
if (!DoesConditionHold(CmpInst::ICMP_SGE, A, B, Info) ||
!DoesConditionHold(CmpInst::ICMP_SGE, B,
ConstantInt::get(A->getType(), 0), Info))
return false;
Changed = replaceSubOverflowUses(II, A, B, ToRemove);
}
return Changed;
}
static bool eliminateConstraints(Function &F, DominatorTree &DT) {
bool Changed = false;
DT.updateDFSNumbers();
ConstraintInfo Info(F.getParent()->getDataLayout());
State S(DT);
// First, collect conditions implied by branches and blocks with their
// Dominator DFS in and out numbers.
for (BasicBlock &BB : F) {
if (!DT.getNode(&BB))
continue;
S.addInfoFor(BB);
}
// Next, sort worklist by dominance, so that dominating conditions to check
// and facts come before conditions and facts dominated by them. If a
// condition to check and a fact have the same numbers, conditional facts come
// first. Assume facts and checks are ordered according to their relative
// order in the containing basic block. Also make sure conditions with
// constant operands come before conditions without constant operands. This
// increases the effectiveness of the current signed <-> unsigned fact
// transfer logic.
stable_sort(S.WorkList, [](const FactOrCheck &A, const FactOrCheck &B) {
auto HasNoConstOp = [](const FactOrCheck &B) {
return !isa<ConstantInt>(B.Inst->getOperand(0)) &&
!isa<ConstantInt>(B.Inst->getOperand(1));
};
// If both entries have the same In numbers, conditional facts come first.
// Otherwise use the relative order in the basic block.
if (A.NumIn == B.NumIn) {
if (A.isConditionFact() && B.isConditionFact()) {
bool NoConstOpA = HasNoConstOp(A);
bool NoConstOpB = HasNoConstOp(B);
return NoConstOpA < NoConstOpB;
}
if (A.isConditionFact())
return true;
if (B.isConditionFact())
return false;
return A.Inst->comesBefore(B.Inst);
}
return A.NumIn < B.NumIn;
});
SmallVector<Instruction *> ToRemove;
// Finally, process ordered worklist and eliminate implied conditions.
SmallVector<StackEntry, 16> DFSInStack;
for (FactOrCheck &CB : S.WorkList) {
// First, pop entries from the stack that are out-of-scope for CB. Remove
// the corresponding entry from the constraint system.
while (!DFSInStack.empty()) {
auto &E = DFSInStack.back();
LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
<< "\n");
LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
assert(E.NumIn <= CB.NumIn);
if (CB.NumOut <= E.NumOut)
break;
LLVM_DEBUG({
dbgs() << "Removing ";
dumpWithNames(Info.getCS(E.IsSigned).getLastConstraint(),
Info.getValue2Index(E.IsSigned));
dbgs() << "\n";
});
Info.popLastConstraint(E.IsSigned);
// Remove variables in the system that went out of scope.
auto &Mapping = Info.getValue2Index(E.IsSigned);
for (Value *V : E.ValuesToRelease)
Mapping.erase(V);
Info.popLastNVariables(E.IsSigned, E.ValuesToRelease.size());
DFSInStack.pop_back();
}
LLVM_DEBUG({
dbgs() << "Processing ";
if (CB.IsCheck)
dbgs() << "condition to simplify: " << *CB.Inst;
else
dbgs() << "fact to add to the system: " << *CB.Inst;
dbgs() << "\n";
});
// For a block, check if any CmpInsts become known based on the current set
// of constraints.
if (CB.IsCheck) {
if (auto *II = dyn_cast<WithOverflowInst>(CB.Inst)) {
Changed |= tryToSimplifyOverflowMath(II, Info, ToRemove);
} else if (auto *Cmp = dyn_cast<ICmpInst>(CB.Inst)) {
Changed |= checkAndReplaceCondition(Cmp, Info);
}
continue;
}
ICmpInst::Predicate Pred;
Value *A, *B;
Value *Cmp = CB.Inst;
match(Cmp, m_Intrinsic<Intrinsic::assume>(m_Value(Cmp)));
if (match(Cmp, m_ICmp(Pred, m_Value(A), m_Value(B)))) {
if (Info.getCS(CmpInst::isSigned(Pred)).size() > MaxRows) {
LLVM_DEBUG(
dbgs()
<< "Skip adding constraint because system has too many rows.\n");
continue;
}
// Use the inverse predicate if required.
if (CB.Not)
Pred = CmpInst::getInversePredicate(Pred);
Info.addFact(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
Info.transferToOtherSystem(Pred, A, B, CB.NumIn, CB.NumOut, DFSInStack);
}
}
#ifndef NDEBUG
unsigned SignedEntries =
count_if(DFSInStack, [](const StackEntry &E) { return E.IsSigned; });
assert(Info.getCS(false).size() == DFSInStack.size() - SignedEntries &&
"updates to CS and DFSInStack are out of sync");
assert(Info.getCS(true).size() == SignedEntries &&
"updates to CS and DFSInStack are out of sync");
#endif
for (Instruction *I : ToRemove)
I->eraseFromParent();
return Changed;
}
PreservedAnalyses ConstraintEliminationPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
if (!eliminateConstraints(F, DT))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
PA.preserveSet<CFGAnalyses>();
return PA;
}
|