1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
; RUN: opt -passes='print<scalar-evolution>' -disable-output %s 2>&1 | FileCheck %s
; Test cases that require rewriting zext SCEV expression with infomration from
; the loop guards.
define void @rewrite_zext(i32 %n) {
; CHECK-LABEL: 'rewrite_zext'
; CHECK-NEXT: Classifying expressions for: @rewrite_zext
; CHECK-NEXT: %ext = zext i32 %n to i64
; CHECK-NEXT: --> (zext i32 %n to i64) U: [0,4294967296) S: [0,4294967296)
; CHECK-NEXT: %n.vec = and i64 %ext, -8
; CHECK-NEXT: --> (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw> U: [0,4294967289) S: [0,4294967289)
; CHECK-NEXT: %index = phi i64 [ 0, %check ], [ %index.next, %loop ]
; CHECK-NEXT: --> {0,+,8}<nuw><nsw><%loop> U: [0,17) S: [0,17) Exits: (8 * ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %index.next = add nuw nsw i64 %index, 8
; CHECK-NEXT: --> {8,+,8}<nuw><nsw><%loop> U: [8,25) S: [8,25) Exits: (8 + (8 * ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: Determining loop execution counts for: @rewrite_zext
; CHECK-NEXT: Loop %loop: backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is 2
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT: Predicates:
; CHECK: Loop %loop: Trip multiple is 1
;
entry:
%ext = zext i32 %n to i64
%cmp5 = icmp ule i64 %ext, 24
br i1 %cmp5, label %check, label %exit
check: ; preds = %entry
%min.iters.check = icmp ult i64 %ext, 8
%n.vec = and i64 %ext, -8
br i1 %min.iters.check, label %exit, label %loop
loop:
%index = phi i64 [ 0, %check ], [ %index.next, %loop ]
%index.next = add nuw nsw i64 %index, 8
%ec = icmp eq i64 %index.next, %n.vec
br i1 %ec, label %exit, label %loop
exit:
ret void
}
; Test case from PR40961.
define i32 @rewrite_zext_min_max(i32 %N, ptr %arr) {
; CHECK-LABEL: 'rewrite_zext_min_max'
; CHECK-NEXT: Classifying expressions for: @rewrite_zext_min_max
; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %N, i32 16)
; CHECK-NEXT: --> (16 umin %N) U: [0,17) S: [0,17)
; CHECK-NEXT: %ext = zext i32 %umin to i64
; CHECK-NEXT: --> (zext i32 (16 umin %N) to i64) U: [0,17) S: [0,17)
; CHECK-NEXT: %n.vec = and i64 %ext, 28
; CHECK-NEXT: --> (4 * ((zext i32 (16 umin %N) to i64) /u 4))<nuw><nsw> U: [0,17) S: [0,17)
; CHECK-NEXT: %index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
; CHECK-NEXT: --> {0,+,4}<nuw><%loop> U: [0,13) S: [0,13) Exits: (4 * ((-4 + (4 * ((zext i32 (16 umin %N) to i64) /u 4))<nuw><nsw>)<nsw> /u 4))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %gep = getelementptr inbounds i32, ptr %arr, i64 %index
; CHECK-NEXT: --> {%arr,+,16}<nuw><%loop> U: full-set S: full-set Exits: ((16 * ((-4 + (4 * ((zext i32 (16 umin %N) to i64) /u 4))<nuw><nsw>)<nsw> /u 4)) + %arr) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %index.next = add nuw i64 %index, 4
; CHECK-NEXT: --> {4,+,4}<nuw><%loop> U: [4,17) S: [4,17) Exits: (4 + (4 * ((-4 + (4 * ((zext i32 (16 umin %N) to i64) /u 4))<nuw><nsw>)<nsw> /u 4))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: Determining loop execution counts for: @rewrite_zext_min_max
; CHECK-NEXT: Loop %loop: backedge-taken count is ((-4 + (4 * ((zext i32 (16 umin %N) to i64) /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is 3
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((-4 + (4 * ((zext i32 (16 umin %N) to i64) /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((-4 + (4 * ((zext i32 (16 umin %N) to i64) /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT: Predicates:
; CHECK: Loop %loop: Trip multiple is 1
;
entry:
%umin = call i32 @llvm.umin.i32(i32 %N, i32 16)
%ext = zext i32 %umin to i64
%min.iters.check = icmp ult i64 %ext, 4
br i1 %min.iters.check, label %exit, label %loop.ph
loop.ph:
%n.vec = and i64 %ext, 28
br label %loop
; %n.vec is [4, 16) and a multiple of 4.
loop:
%index = phi i64 [ 0, %loop.ph ], [ %index.next, %loop ]
%gep = getelementptr inbounds i32, ptr %arr, i64 %index
store i32 0, ptr %gep
%index.next = add nuw i64 %index, 4
%ec = icmp eq i64 %index.next, %n.vec
br i1 %ec, label %exit, label %loop
exit:
ret i32 0
}
; Test case from PR52464. applyLoopGuards needs to apply information about %and
; to %ext, which requires rewriting the zext.
define i32 @rewrite_zext_with_info_from_icmp_ne(i32 %N) {
; CHECK-LABEL: 'rewrite_zext_with_info_from_icmp_ne'
; CHECK-NEXT: Classifying expressions for: @rewrite_zext_with_info_from_icmp_ne
; CHECK-NEXT: %and = and i32 %N, 3
; CHECK-NEXT: --> (zext i2 (trunc i32 %N to i2) to i32) U: [0,4) S: [0,4)
; CHECK-NEXT: %and.sub.1 = add nsw i32 %and, -1
; CHECK-NEXT: --> (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> U: [-1,3) S: [-1,3)
; CHECK-NEXT: %ext = zext i32 %and.sub.1 to i64
; CHECK-NEXT: --> (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64) U: [0,4294967296) S: [0,4294967296)
; CHECK-NEXT: %n.rnd.up = add nuw nsw i64 %ext, 4
; CHECK-NEXT: --> (4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> U: [4,4294967300) S: [4,4294967300)
; CHECK-NEXT: %n.vec = and i64 %n.rnd.up, 8589934588
; CHECK-NEXT: --> (4 * ((4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> /u 4))<nuw><nsw> U: [4,4294967297) S: [4,4294967297)
; CHECK-NEXT: %iv = phi i64 [ 0, %loop.ph ], [ %iv.next, %loop ]
; CHECK-NEXT: --> {0,+,4}<%loop> U: [0,1) S: [0,1) Exits: 0 LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %iv.next = add i64 %iv, 4
; CHECK-NEXT: --> {4,+,4}<%loop> U: [4,5) S: [4,5) Exits: 4 LoopDispositions: { %loop: Computable }
; CHECK-NEXT: Determining loop execution counts for: @rewrite_zext_with_info_from_icmp_ne
; CHECK-NEXT: Loop %loop: backedge-taken count is 0
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is 0
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is 0
; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is 0
; CHECK-NEXT: Predicates:
; CHECK: Loop %loop: Trip multiple is 1
;
entry:
%and = and i32 %N, 3
%cmp6.not = icmp eq i32 %and, 0
br i1 %cmp6.not, label %exit, label %loop.ph
loop.ph:
%and.sub.1 = add nsw i32 %and, -1
%ext = zext i32 %and.sub.1 to i64
%n.rnd.up = add nuw nsw i64 %ext, 4
%n.vec = and i64 %n.rnd.up, 8589934588
br label %loop
loop:
%iv = phi i64 [ 0, %loop.ph ], [ %iv.next, %loop ]
%iv.next = add i64 %iv, 4
call void @use(i64 %iv.next)
%ec = icmp eq i64 %iv.next, %n.vec
br i1 %ec, label %exit, label %loop
exit:
ret i32 0
}
; Similar to @rewrite_zext_with_info_from_icmp_ne, but the loop is not guarded by %and != 0,
; hence the subsequent subtraction may yield a negative number.
define i32 @rewrite_zext_no_icmp_ne(i32 %N) {
; CHECK-LABEL: 'rewrite_zext_no_icmp_ne'
; CHECK-NEXT: Classifying expressions for: @rewrite_zext_no_icmp_ne
; CHECK-NEXT: %and = and i32 %N, 3
; CHECK-NEXT: --> (zext i2 (trunc i32 %N to i2) to i32) U: [0,4) S: [0,4)
; CHECK-NEXT: %and.sub.1 = add nsw i32 %and, -1
; CHECK-NEXT: --> (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> U: [-1,3) S: [-1,3)
; CHECK-NEXT: %ext = zext i32 %and.sub.1 to i64
; CHECK-NEXT: --> (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64) U: [0,4294967296) S: [0,4294967296)
; CHECK-NEXT: %n.rnd.up = add nuw nsw i64 %ext, 4
; CHECK-NEXT: --> (4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> U: [4,4294967300) S: [4,4294967300)
; CHECK-NEXT: %n.vec = and i64 %n.rnd.up, 8589934588
; CHECK-NEXT: --> (4 * ((4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> /u 4))<nuw><nsw> U: [4,4294967297) S: [4,4294967297)
; CHECK-NEXT: %iv = phi i64 [ 0, %loop.ph ], [ %iv.next, %loop ]
; CHECK-NEXT: --> {0,+,4}<%loop> U: [0,4294967293) S: [0,4294967293) Exits: (4 * ((-4 + (4 * ((4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> /u 4))<nuw><nsw>)<nsw> /u 4))<nuw><nsw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %iv.next = add i64 %iv, 4
; CHECK-NEXT: --> {4,+,4}<%loop> U: [4,4294967297) S: [4,4294967297) Exits: (4 + (4 * ((-4 + (4 * ((4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> /u 4))<nuw><nsw>)<nsw> /u 4))<nuw><nsw>)<nuw><nsw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT: Determining loop execution counts for: @rewrite_zext_no_icmp_ne
; CHECK-NEXT: Loop %loop: backedge-taken count is ((-4 + (4 * ((4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is 1073741823
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((-4 + (4 * ((4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((-4 + (4 * ((4 + (zext i32 (-1 + (zext i2 (trunc i32 %N to i2) to i32))<nsw> to i64))<nuw><nsw> /u 4))<nuw><nsw>)<nsw> /u 4)
; CHECK-NEXT: Predicates:
; CHECK: Loop %loop: Trip multiple is 1
;
entry:
%and = and i32 %N, 3
br label %loop.ph
loop.ph:
%and.sub.1 = add nsw i32 %and, -1
%ext = zext i32 %and.sub.1 to i64
%n.rnd.up = add nuw nsw i64 %ext, 4
%n.vec = and i64 %n.rnd.up, 8589934588
br label %loop
loop:
%iv = phi i64 [ 0, %loop.ph ], [ %iv.next, %loop ]
%iv.next = add i64 %iv, 4
call void @use(i64 %iv.next)
%ec = icmp eq i64 %iv.next, %n.vec
br i1 %ec, label %exit, label %loop
exit:
ret i32 0
}
; Make sure no information is lost for conditions on both %n and (zext %n).
define void @rewrite_zext_and_base_1(i32 %n) {
; CHECK-LABEL: 'rewrite_zext_and_base_1'
; CHECK-NEXT: Classifying expressions for: @rewrite_zext_and_base_1
; CHECK-NEXT: %ext = zext i32 %n to i64
; CHECK-NEXT: --> (zext i32 %n to i64) U: [0,4294967296) S: [0,4294967296)
; CHECK-NEXT: %n.vec = and i64 %ext, -8
; CHECK-NEXT: --> (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw> U: [0,4294967289) S: [0,4294967289)
; CHECK-NEXT: %index = phi i64 [ 0, %check ], [ %index.next, %loop ]
; CHECK-NEXT: --> {0,+,8}<nuw><nsw><%loop> U: [0,25) S: [0,25) Exits: (8 * ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %index.next = add nuw nsw i64 %index, 8
; CHECK-NEXT: --> {8,+,8}<nuw><nsw><%loop> U: [8,33) S: [8,33) Exits: (8 + (8 * ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: Determining loop execution counts for: @rewrite_zext_and_base_1
; CHECK-NEXT: Loop %loop: backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is 3
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT: Predicates:
; CHECK: Loop %loop: Trip multiple is 1
;
entry:
%ext = zext i32 %n to i64
%cmp5 = icmp ule i64 %ext, 48
br i1 %cmp5, label %check.1, label %exit
check.1:
%cmp.2 = icmp ule i32 %n, 32
br i1 %cmp.2, label %check, label %exit
check: ; preds = %entry
%min.iters.check = icmp ult i64 %ext, 8
%n.vec = and i64 %ext, -8
br i1 %min.iters.check, label %exit, label %loop
loop:
%index = phi i64 [ 0, %check ], [ %index.next, %loop ]
%index.next = add nuw nsw i64 %index, 8
%ec = icmp eq i64 %index.next, %n.vec
br i1 %ec, label %exit, label %loop
exit:
ret void
}
; Make sure no information is lost for conditions on both %n and (zext %n).
define void @rewrite_zext_and_base_2(i32 %n) {
; CHECK-LABEL: 'rewrite_zext_and_base_2'
; CHECK-NEXT: Classifying expressions for: @rewrite_zext_and_base_2
; CHECK-NEXT: %ext = zext i32 %n to i64
; CHECK-NEXT: --> (zext i32 %n to i64) U: [0,4294967296) S: [0,4294967296)
; CHECK-NEXT: %n.vec = and i64 %ext, -8
; CHECK-NEXT: --> (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw> U: [0,4294967289) S: [0,4294967289)
; CHECK-NEXT: %index = phi i64 [ 0, %check ], [ %index.next, %loop ]
; CHECK-NEXT: --> {0,+,8}<nuw><nsw><%loop> U: [0,25) S: [0,25) Exits: (8 * ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8))<nuw> LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %index.next = add nuw nsw i64 %index, 8
; CHECK-NEXT: --> {8,+,8}<nuw><nsw><%loop> U: [8,33) S: [8,33) Exits: (8 + (8 * ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8))<nuw>) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: Determining loop execution counts for: @rewrite_zext_and_base_2
; CHECK-NEXT: Loop %loop: backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is 3
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((-8 + (8 * ((zext i32 %n to i64) /u 8))<nuw><nsw>)<nsw> /u 8)
; CHECK-NEXT: Predicates:
; CHECK: Loop %loop: Trip multiple is 1
;
entry:
%ext = zext i32 %n to i64
%cmp5 = icmp ule i64 %ext, 32
br i1 %cmp5, label %check.1, label %exit
check.1:
%cmp.2 = icmp ule i32 %n, 48
br i1 %cmp.2, label %check, label %exit
check: ; preds = %entry
%min.iters.check = icmp ult i64 %ext, 8
%n.vec = and i64 %ext, -8
br i1 %min.iters.check, label %exit, label %loop
loop:
%index = phi i64 [ 0, %check ], [ %index.next, %loop ]
%index.next = add nuw nsw i64 %index, 8
%ec = icmp eq i64 %index.next, %n.vec
br i1 %ec, label %exit, label %loop
exit:
ret void
}
define void @guard_pessimizes_analysis_step2(i1 %c, i32 %N) {
; CHECK-LABEL: 'guard_pessimizes_analysis_step2'
; CHECK-NEXT: Classifying expressions for: @guard_pessimizes_analysis_step2
; CHECK-NEXT: %N.ext = zext i32 %N to i64
; CHECK-NEXT: --> (zext i32 %N to i64) U: [0,4294967296) S: [0,4294967296)
; CHECK-NEXT: %init = phi i64 [ 2, %entry ], [ 4, %bb1 ]
; CHECK-NEXT: --> %init U: [2,5) S: [2,5)
; CHECK-NEXT: %iv = phi i64 [ %iv.next, %loop ], [ %init, %loop.ph ]
; CHECK-NEXT: --> {%init,+,2}<%loop> U: [2,17) S: [2,17) Exits: ((2 * ((14 + (-1 * %init)<nsw>)<nsw> /u 2))<nuw><nsw> + %init) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: %iv.next = add i64 %iv, 2
; CHECK-NEXT: --> {(2 + %init)<nuw><nsw>,+,2}<%loop> U: [4,19) S: [4,19) Exits: (2 + (2 * ((14 + (-1 * %init)<nsw>)<nsw> /u 2))<nuw><nsw> + %init) LoopDispositions: { %loop: Computable }
; CHECK-NEXT: Determining loop execution counts for: @guard_pessimizes_analysis_step2
; CHECK-NEXT: Loop %loop: backedge-taken count is ((14 + (-1 * %init)<nsw>)<nsw> /u 2)
; CHECK-NEXT: Loop %loop: constant max backedge-taken count is 6
; CHECK-NEXT: Loop %loop: symbolic max backedge-taken count is ((14 + (-1 * %init)<nsw>)<nsw> /u 2)
; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((14 + (-1 * %init)<nsw>)<nsw> /u 2)
; CHECK-NEXT: Predicates:
; CHECK: Loop %loop: Trip multiple is 1
;
entry:
%N.ext = zext i32 %N to i64
br i1 %c, label %bb1, label %guard
bb1:
br label %guard
guard:
%init = phi i64 [ 2, %entry ], [ 4, %bb1 ]
%c.1 = icmp ult i64 %init, %N.ext
br i1 %c.1, label %loop.ph, label %exit
loop.ph:
br label %loop
loop:
%iv = phi i64 [ %iv.next, %loop ], [ %init, %loop.ph ]
%iv.next = add i64 %iv, 2
%exitcond = icmp eq i64 %iv.next, 16
br i1 %exitcond, label %exit, label %loop
exit:
ret void
}
declare void @use(i64)
declare i32 @llvm.umin.i32(i32, i32)
|