1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
; RUN: llc -mtriple=mips -relocation-model=static < %s | FileCheck --check-prefixes=ALL,SYM32,O32,O32BE %s
; RUN: llc -mtriple=mipsel -relocation-model=static < %s | FileCheck --check-prefixes=ALL,SYM32,O32,O32LE %s
; RUN-TODO: llc -mtriple=mips64 -relocation-model=static -target-abi o32 < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s
; RUN-TODO: llc -mtriple=mips64el -relocation-model=static -target-abi o32 < %s | FileCheck --check-prefixes=ALL,SYM32,O32 %s
; RUN: llc -mtriple=mips64 -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,NEW %s
; RUN: llc -mtriple=mips64el -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefixes=ALL,SYM32,NEW %s
; RUN: llc -mtriple=mips64 -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefixes=ALL,SYM64,NEW %s
; RUN: llc -mtriple=mips64el -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefixes=ALL,SYM64,NEW %s
; Test the floating point arguments for all ABI's and byte orders as specified
; by section 5 of MD00305 (MIPS ABIs Described).
;
; N32/N64 are identical in this area so their checks have been combined into
; the 'NEW' prefix (the N stands for New).
@bytes = global [11 x i8] zeroinitializer
@dwords = global [11 x i64] zeroinitializer
@floats = global [11 x float] zeroinitializer
@doubles = global [11 x double] zeroinitializer
define void @double_args(double %a, double %b, double %c, double %d, double %e,
double %f, double %g, double %h, double %i) nounwind {
entry:
%0 = getelementptr [11 x double], ptr @doubles, i32 0, i32 1
store volatile double %a, ptr %0
%1 = getelementptr [11 x double], ptr @doubles, i32 0, i32 2
store volatile double %b, ptr %1
%2 = getelementptr [11 x double], ptr @doubles, i32 0, i32 3
store volatile double %c, ptr %2
%3 = getelementptr [11 x double], ptr @doubles, i32 0, i32 4
store volatile double %d, ptr %3
%4 = getelementptr [11 x double], ptr @doubles, i32 0, i32 5
store volatile double %e, ptr %4
%5 = getelementptr [11 x double], ptr @doubles, i32 0, i32 6
store volatile double %f, ptr %5
%6 = getelementptr [11 x double], ptr @doubles, i32 0, i32 7
store volatile double %g, ptr %6
%7 = getelementptr [11 x double], ptr @doubles, i32 0, i32 8
store volatile double %h, ptr %7
%8 = getelementptr [11 x double], ptr @doubles, i32 0, i32 9
store volatile double %i, ptr %8
ret void
}
; ALL-LABEL: double_args:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
; SYM64-DAG: daddiu [[R2:\$[0-9]]], ${{[0-9]+}}, %lo(doubles)
; The first argument is floating point so floating point registers are used.
; The first argument is the same for O32/N32/N64 but the second argument differs
; by register
; ALL-DAG: sdc1 $f12, 8([[R2]])
; O32-DAG: sdc1 $f14, 16([[R2]])
; NEW-DAG: sdc1 $f13, 16([[R2]])
; O32 has run out of argument registers and starts using the stack
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 16($sp)
; O32-DAG: sdc1 [[F1]], 24([[R2]])
; NEW-DAG: sdc1 $f14, 24([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 24($sp)
; O32-DAG: sdc1 [[F1]], 32([[R2]])
; NEW-DAG: sdc1 $f15, 32([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 32($sp)
; O32-DAG: sdc1 [[F1]], 40([[R2]])
; NEW-DAG: sdc1 $f16, 40([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 40($sp)
; O32-DAG: sdc1 [[F1]], 48([[R2]])
; NEW-DAG: sdc1 $f17, 48([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 48($sp)
; O32-DAG: sdc1 [[F1]], 56([[R2]])
; NEW-DAG: sdc1 $f18, 56([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 56($sp)
; O32-DAG: sdc1 [[F1]], 64([[R2]])
; NEW-DAG: sdc1 $f19, 64([[R2]])
; N32/N64 have run out of registers and start using the stack too
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 64($sp)
; O32-DAG: sdc1 [[F1]], 72([[R2]])
; NEW-DAG: ldc1 [[F1:\$f[0-9]+]], 0($sp)
; NEW-DAG: sdc1 [[F1]], 72([[R2]])
define void @float_args(float %a, float %b, float %c, float %d, float %e,
float %f, float %g, float %h, float %i) nounwind {
entry:
%0 = getelementptr [11 x float], ptr @floats, i32 0, i32 1
store volatile float %a, ptr %0
%1 = getelementptr [11 x float], ptr @floats, i32 0, i32 2
store volatile float %b, ptr %1
%2 = getelementptr [11 x float], ptr @floats, i32 0, i32 3
store volatile float %c, ptr %2
%3 = getelementptr [11 x float], ptr @floats, i32 0, i32 4
store volatile float %d, ptr %3
%4 = getelementptr [11 x float], ptr @floats, i32 0, i32 5
store volatile float %e, ptr %4
%5 = getelementptr [11 x float], ptr @floats, i32 0, i32 6
store volatile float %f, ptr %5
%6 = getelementptr [11 x float], ptr @floats, i32 0, i32 7
store volatile float %g, ptr %6
%7 = getelementptr [11 x float], ptr @floats, i32 0, i32 8
store volatile float %h, ptr %7
%8 = getelementptr [11 x float], ptr @floats, i32 0, i32 9
store volatile float %i, ptr %8
ret void
}
; ALL-LABEL: float_args:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
; SYM64-DAG: daddiu [[R1:\$[0-9]]], ${{[0-9]+}}, %lo(floats)
; The first argument is floating point so floating point registers are used.
; The first argument is the same for O32/N32/N64 but the second argument differs
; by register
; ALL-DAG: swc1 $f12, 4([[R1]])
; O32-DAG: swc1 $f14, 8([[R1]])
; NEW-DAG: swc1 $f13, 8([[R1]])
; O32 has run out of argument registers and (in theory) starts using the stack
; I've yet to find a reference in the documentation about this but GCC uses up
; the remaining two argument slots in the GPR's first. We'll do the same for
; compatibility.
; O32-DAG: mtc1 $6, $f0
; O32-DAG: swc1 $f0, 12([[R1]])
; NEW-DAG: swc1 $f14, 12([[R1]])
; O32-DAG: mtc1 $7, $f0
; O32-DAG: swc1 $f0, 16([[R1]])
; NEW-DAG: swc1 $f15, 16([[R1]])
; O32 is definitely out of registers now and switches to the stack.
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 16($sp)
; O32-DAG: swc1 [[F1]], 20([[R1]])
; NEW-DAG: swc1 $f16, 20([[R1]])
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 20($sp)
; O32-DAG: swc1 [[F1]], 24([[R1]])
; NEW-DAG: swc1 $f17, 24([[R1]])
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 24($sp)
; O32-DAG: swc1 [[F1]], 28([[R1]])
; NEW-DAG: swc1 $f18, 28([[R1]])
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 28($sp)
; O32-DAG: swc1 [[F1]], 32([[R1]])
; NEW-DAG: swc1 $f19, 32([[R1]])
; N32/N64 have run out of registers and start using the stack too
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 32($sp)
; O32-DAG: swc1 [[F1]], 36([[R1]])
; NEW-DAG: lwc1 [[F1:\$f[0-9]+]], 0($sp)
; NEW-DAG: swc1 [[F1]], 36([[R1]])
define void @double_arg2(i8 %a, double %b) nounwind {
entry:
%0 = getelementptr [11 x i8], ptr @bytes, i32 0, i32 1
store volatile i8 %a, ptr %0
%1 = getelementptr [11 x double], ptr @doubles, i32 0, i32 1
store volatile double %b, ptr %1
ret void
}
; ALL-LABEL: double_arg2:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
; SYM64-DAG: daddiu [[R1:\$[0-9]]], ${{[0-9]+}}, %lo(bytes)
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
; SYM64-DAG: daddiu [[R2:\$[0-9]]], ${{[0-9]+}}, %lo(doubles)
; The first argument is the same in O32/N32/N64.
; ALL-DAG: sb $4, 1([[R1]])
; The first argument isn't floating point so floating point registers are not
; used in O32, but N32/N64 will still use them.
; The second slot is insufficiently aligned for double on O32 so it is skipped.
; Also, double occupies two slots on O32 and only one for N32/N64.
; O32LE-DAG: mtc1 $6, [[F1:\$f[0-9]*[02468]+]]
; O32LE-DAG: mtc1 $7, [[F2:\$f[0-9]*[13579]+]]
; O32BE-DAG: mtc1 $6, [[F2:\$f[0-9]*[13579]+]]
; O32BE-DAG: mtc1 $7, [[F1:\$f[0-9]*[02468]+]]
; O32-DAG: sdc1 [[F1]], 8([[R2]])
; NEW-DAG: sdc1 $f13, 8([[R2]])
define void @float_arg2(i8 %a, float %b) nounwind {
entry:
%0 = getelementptr [11 x i8], ptr @bytes, i32 0, i32 1
store volatile i8 %a, ptr %0
%1 = getelementptr [11 x float], ptr @floats, i32 0, i32 1
store volatile float %b, ptr %1
ret void
}
; ALL-LABEL: float_arg2:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
; SYM64-DAG: daddiu [[R1:\$[0-9]]], ${{[0-9]+}}, %lo(bytes)
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
; SYM64-DAG: daddiu [[R2:\$[0-9]]], ${{[0-9]+}}, %lo(floats)
; The first argument is the same in O32/N32/N64.
; ALL-DAG: sb $4, 1([[R1]])
; The first argument isn't floating point so floating point registers are not
; used in O32, but N32/N64 will still use them.
; MD00305 and GCC disagree on this one. MD00305 says that floats are treated
; as 8-byte aligned and occupy two slots on O32. GCC is treating them as 4-byte
; aligned and occupying one slot. We'll use GCC's definition.
; O32-DAG: mtc1 $5, $f0
; O32-DAG: swc1 $f0, 4([[R2]])
; NEW-DAG: swc1 $f13, 4([[R2]])
|