1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -S -passes='loop(indvars),loop-unroll' -verify-loop-info | FileCheck %s
;
; Unit tests for loop unrolling using ScalarEvolution to compute trip counts.
;
; Indvars is run first to generate an "old" SCEV result. Some unit
; tests may check that SCEV is properly invalidated between passes.
; Completely unroll loops without a canonical IV.
define i32 @sansCanonical(ptr %base) nounwind {
; CHECK-LABEL: @sansCanonical(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[WHILE_BODY:%.*]]
; CHECK: while.body:
; CHECK-NEXT: [[ADR:%.*]] = getelementptr inbounds i32, ptr [[BASE:%.*]], i64 9
; CHECK-NEXT: [[TMP:%.*]] = load i32, ptr [[ADR]], align 8
; CHECK-NEXT: [[ADR_1:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 8
; CHECK-NEXT: [[TMP_1:%.*]] = load i32, ptr [[ADR_1]], align 8
; CHECK-NEXT: [[SUM_NEXT_1:%.*]] = add i32 [[TMP]], [[TMP_1]]
; CHECK-NEXT: [[ADR_2:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 7
; CHECK-NEXT: [[TMP_2:%.*]] = load i32, ptr [[ADR_2]], align 8
; CHECK-NEXT: [[SUM_NEXT_2:%.*]] = add i32 [[SUM_NEXT_1]], [[TMP_2]]
; CHECK-NEXT: [[ADR_3:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 6
; CHECK-NEXT: [[TMP_3:%.*]] = load i32, ptr [[ADR_3]], align 8
; CHECK-NEXT: [[SUM_NEXT_3:%.*]] = add i32 [[SUM_NEXT_2]], [[TMP_3]]
; CHECK-NEXT: [[ADR_4:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 5
; CHECK-NEXT: [[TMP_4:%.*]] = load i32, ptr [[ADR_4]], align 8
; CHECK-NEXT: [[SUM_NEXT_4:%.*]] = add i32 [[SUM_NEXT_3]], [[TMP_4]]
; CHECK-NEXT: [[ADR_5:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 4
; CHECK-NEXT: [[TMP_5:%.*]] = load i32, ptr [[ADR_5]], align 8
; CHECK-NEXT: [[SUM_NEXT_5:%.*]] = add i32 [[SUM_NEXT_4]], [[TMP_5]]
; CHECK-NEXT: [[ADR_6:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 3
; CHECK-NEXT: [[TMP_6:%.*]] = load i32, ptr [[ADR_6]], align 8
; CHECK-NEXT: [[SUM_NEXT_6:%.*]] = add i32 [[SUM_NEXT_5]], [[TMP_6]]
; CHECK-NEXT: [[ADR_7:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 2
; CHECK-NEXT: [[TMP_7:%.*]] = load i32, ptr [[ADR_7]], align 8
; CHECK-NEXT: [[SUM_NEXT_7:%.*]] = add i32 [[SUM_NEXT_6]], [[TMP_7]]
; CHECK-NEXT: [[ADR_8:%.*]] = getelementptr inbounds i32, ptr [[BASE]], i64 1
; CHECK-NEXT: [[TMP_8:%.*]] = load i32, ptr [[ADR_8]], align 8
; CHECK-NEXT: [[SUM_NEXT_8:%.*]] = add i32 [[SUM_NEXT_7]], [[TMP_8]]
; CHECK-NEXT: ret i32 [[SUM_NEXT_8]]
;
entry:
br label %while.body
while.body:
%iv = phi i64 [ 10, %entry ], [ %iv.next, %while.body ]
%sum = phi i32 [ 0, %entry ], [ %sum.next, %while.body ]
%iv.next = add i64 %iv, -1
%adr = getelementptr inbounds i32, ptr %base, i64 %iv.next
%tmp = load i32, ptr %adr, align 8
%sum.next = add i32 %sum, %tmp
%iv.narrow = trunc i64 %iv.next to i32
%cmp.i65 = icmp sgt i32 %iv.narrow, 0
br i1 %cmp.i65, label %while.body, label %exit
exit:
ret i32 %sum
}
; SCEV unrolling properly handles loops with multiple exits. In this
; case, the computed trip count based on a canonical IV is *not* for a
; latch block.
define i64 @earlyLoopTest(ptr %base) nounwind {
; CHECK-LABEL: @earlyLoopTest(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP:%.*]]
; CHECK: loop:
; CHECK-NEXT: [[VAL:%.*]] = load i64, ptr [[BASE:%.*]], align 4
; CHECK-NEXT: br label [[TAIL:%.*]]
; CHECK: tail:
; CHECK-NEXT: [[CMP2:%.*]] = icmp ne i64 [[VAL]], 0
; CHECK-NEXT: br i1 [[CMP2]], label [[LOOP_1:%.*]], label [[EXIT2:%.*]]
; CHECK: loop.1:
; CHECK-NEXT: [[ADR_1:%.*]] = getelementptr i64, ptr [[BASE]], i64 1
; CHECK-NEXT: [[VAL_1:%.*]] = load i64, ptr [[ADR_1]], align 4
; CHECK-NEXT: [[S_NEXT_1:%.*]] = add i64 [[VAL]], [[VAL_1]]
; CHECK-NEXT: br label [[TAIL_1:%.*]]
; CHECK: tail.1:
; CHECK-NEXT: [[CMP2_1:%.*]] = icmp ne i64 [[VAL_1]], 0
; CHECK-NEXT: br i1 [[CMP2_1]], label [[LOOP_2:%.*]], label [[EXIT2]]
; CHECK: loop.2:
; CHECK-NEXT: [[ADR_2:%.*]] = getelementptr i64, ptr [[BASE]], i64 2
; CHECK-NEXT: [[VAL_2:%.*]] = load i64, ptr [[ADR_2]], align 4
; CHECK-NEXT: [[S_NEXT_2:%.*]] = add i64 [[S_NEXT_1]], [[VAL_2]]
; CHECK-NEXT: br label [[TAIL_2:%.*]]
; CHECK: tail.2:
; CHECK-NEXT: [[CMP2_2:%.*]] = icmp ne i64 [[VAL_2]], 0
; CHECK-NEXT: br i1 [[CMP2_2]], label [[LOOP_3:%.*]], label [[EXIT2]]
; CHECK: loop.3:
; CHECK-NEXT: [[ADR_3:%.*]] = getelementptr i64, ptr [[BASE]], i64 3
; CHECK-NEXT: [[VAL_3:%.*]] = load i64, ptr [[ADR_3]], align 4
; CHECK-NEXT: [[S_NEXT_3:%.*]] = add i64 [[S_NEXT_2]], [[VAL_3]]
; CHECK-NEXT: br i1 false, label [[TAIL_3:%.*]], label [[EXIT1:%.*]]
; CHECK: tail.3:
; CHECK-NEXT: br label [[EXIT2]]
; CHECK: exit1:
; CHECK-NEXT: [[S_LCSSA:%.*]] = phi i64 [ [[S_NEXT_2]], [[LOOP_3]] ]
; CHECK-NEXT: ret i64 [[S_LCSSA]]
; CHECK: exit2:
; CHECK-NEXT: [[S_NEXT_LCSSA1:%.*]] = phi i64 [ [[VAL]], [[TAIL]] ], [ [[S_NEXT_1]], [[TAIL_1]] ], [ [[S_NEXT_2]], [[TAIL_2]] ], [ [[S_NEXT_3]], [[TAIL_3]] ]
; CHECK-NEXT: ret i64 [[S_NEXT_LCSSA1]]
;
entry:
br label %loop
loop:
%iv = phi i64 [ 0, %entry ], [ %inc, %tail ]
%s = phi i64 [ 0, %entry ], [ %s.next, %tail ]
%adr = getelementptr i64, ptr %base, i64 %iv
%val = load i64, ptr %adr
%s.next = add i64 %s, %val
%inc = add i64 %iv, 1
%cmp = icmp ne i64 %inc, 4
br i1 %cmp, label %tail, label %exit1
tail:
%cmp2 = icmp ne i64 %val, 0
br i1 %cmp2, label %loop, label %exit2
exit1:
ret i64 %s
exit2:
ret i64 %s.next
}
; SCEV properly unrolls multi-exit loops.
define i32 @multiExit(ptr %base) nounwind {
; CHECK-LABEL: @multiExit(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[L1:%.*]]
; CHECK: l1:
; CHECK-NEXT: [[VAL:%.*]] = load i32, ptr [[BASE:%.*]], align 4
; CHECK-NEXT: br i1 false, label [[L2:%.*]], label [[EXIT1:%.*]]
; CHECK: l2:
; CHECK-NEXT: ret i32 [[VAL]]
; CHECK: exit1:
; CHECK-NEXT: ret i32 1
;
entry:
br label %l1
l1:
%iv1 = phi i32 [ 0, %entry ], [ %inc1, %l2 ]
%iv2 = phi i32 [ 0, %entry ], [ %inc2, %l2 ]
%inc1 = add i32 %iv1, 1
%inc2 = add i32 %iv2, 1
%adr = getelementptr i32, ptr %base, i32 %iv1
%val = load i32, ptr %adr
%cmp1 = icmp slt i32 %iv1, 5
br i1 %cmp1, label %l2, label %exit1
l2:
%cmp2 = icmp slt i32 %iv2, 10
br i1 %cmp2, label %l1, label %exit2
exit1:
ret i32 1
exit2:
ret i32 %val
}
; SCEV can unroll a multi-exit loops even if the latch block has no
; known trip count, but an early exit has a known trip count. In this
; case we must be careful not to optimize the latch branch away.
define i32 @multiExitIncomplete(ptr %base) nounwind {
; CHECK-LABEL: @multiExitIncomplete(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[L1:%.*]]
; CHECK: l1:
; CHECK-NEXT: [[VAL:%.*]] = load i32, ptr [[BASE:%.*]], align 4
; CHECK-NEXT: br label [[L2:%.*]]
; CHECK: l2:
; CHECK-NEXT: br label [[L3:%.*]]
; CHECK: l3:
; CHECK-NEXT: [[CMP3:%.*]] = icmp ne i32 [[VAL]], 0
; CHECK-NEXT: br i1 [[CMP3]], label [[L1_1:%.*]], label [[EXIT3:%.*]]
; CHECK: l1.1:
; CHECK-NEXT: [[ADR_1:%.*]] = getelementptr i32, ptr [[BASE]], i32 1
; CHECK-NEXT: [[VAL_1:%.*]] = load i32, ptr [[ADR_1]], align 4
; CHECK-NEXT: br label [[L2_1:%.*]]
; CHECK: l2.1:
; CHECK-NEXT: br label [[L3_1:%.*]]
; CHECK: l3.1:
; CHECK-NEXT: [[CMP3_1:%.*]] = icmp ne i32 [[VAL_1]], 0
; CHECK-NEXT: br i1 [[CMP3_1]], label [[L1_2:%.*]], label [[EXIT3]]
; CHECK: l1.2:
; CHECK-NEXT: [[ADR_2:%.*]] = getelementptr i32, ptr [[BASE]], i32 2
; CHECK-NEXT: [[VAL_2:%.*]] = load i32, ptr [[ADR_2]], align 4
; CHECK-NEXT: br label [[L2_2:%.*]]
; CHECK: l2.2:
; CHECK-NEXT: br label [[L3_2:%.*]]
; CHECK: l3.2:
; CHECK-NEXT: [[CMP3_2:%.*]] = icmp ne i32 [[VAL_2]], 0
; CHECK-NEXT: br i1 [[CMP3_2]], label [[L1_3:%.*]], label [[EXIT3]]
; CHECK: l1.3:
; CHECK-NEXT: [[ADR_3:%.*]] = getelementptr i32, ptr [[BASE]], i32 3
; CHECK-NEXT: [[VAL_3:%.*]] = load i32, ptr [[ADR_3]], align 4
; CHECK-NEXT: br label [[L2_3:%.*]]
; CHECK: l2.3:
; CHECK-NEXT: br label [[L3_3:%.*]]
; CHECK: l3.3:
; CHECK-NEXT: [[CMP3_3:%.*]] = icmp ne i32 [[VAL_3]], 0
; CHECK-NEXT: br i1 [[CMP3_3]], label [[L1_4:%.*]], label [[EXIT3]]
; CHECK: l1.4:
; CHECK-NEXT: [[ADR_4:%.*]] = getelementptr i32, ptr [[BASE]], i32 4
; CHECK-NEXT: [[VAL_4:%.*]] = load i32, ptr [[ADR_4]], align 4
; CHECK-NEXT: br label [[L2_4:%.*]]
; CHECK: l2.4:
; CHECK-NEXT: br label [[L3_4:%.*]]
; CHECK: l3.4:
; CHECK-NEXT: [[CMP3_4:%.*]] = icmp ne i32 [[VAL_4]], 0
; CHECK-NEXT: br i1 [[CMP3_4]], label [[L1_5:%.*]], label [[EXIT3]]
; CHECK: l1.5:
; CHECK-NEXT: br i1 false, label [[L2_5:%.*]], label [[EXIT1:%.*]]
; CHECK: l2.5:
; CHECK-NEXT: br i1 true, label [[L3_5:%.*]], label [[EXIT2:%.*]]
; CHECK: l3.5:
; CHECK-NEXT: br label [[EXIT3]]
; CHECK: exit1:
; CHECK-NEXT: ret i32 1
; CHECK: exit2:
; CHECK-NEXT: ret i32 2
; CHECK: exit3:
; CHECK-NEXT: ret i32 3
;
entry:
br label %l1
l1:
%iv1 = phi i32 [ 0, %entry ], [ %inc1, %l3 ]
%iv2 = phi i32 [ 0, %entry ], [ %inc2, %l3 ]
%inc1 = add i32 %iv1, 1
%inc2 = add i32 %iv2, 1
%adr = getelementptr i32, ptr %base, i32 %iv1
%val = load i32, ptr %adr
%cmp1 = icmp slt i32 %iv1, 5
br i1 %cmp1, label %l2, label %exit1
l2:
%cmp2 = icmp slt i32 %iv2, 10
br i1 %cmp2, label %l3, label %exit2
l3:
%cmp3 = icmp ne i32 %val, 0
br i1 %cmp3, label %l1, label %exit3
exit1:
ret i32 1
exit2:
ret i32 2
exit3:
ret i32 3
}
; When loop unroll merges a loop exit with one of its parent loop's
; exits, SCEV must forget its ExitNotTaken info.
define void @nestedUnroll() nounwind {
; CHECK-LABEL: @nestedUnroll(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[FOR_INC:%.*]]
; CHECK: for.inc:
; CHECK-NEXT: br label [[FOR_BODY38:%.*]]
; CHECK: for.body38:
; CHECK-NEXT: br label [[FOR_BODY43:%.*]]
; CHECK: for.body43:
; CHECK-NEXT: br label [[FOR_BODY87:%.*]]
; CHECK: for.body87:
; CHECK-NEXT: br label [[FOR_BODY87]]
;
entry:
br label %for.inc
for.inc:
br i1 false, label %for.inc, label %for.body38.preheader
for.body38.preheader:
br label %for.body38
for.body38:
%i.113 = phi i32 [ %inc76, %for.inc74 ], [ 0, %for.body38.preheader ]
%mul48 = mul nsw i32 %i.113, 6
br label %for.body43
for.body43:
%j.011 = phi i32 [ 0, %for.body38 ], [ %inc72, %for.body43 ]
%add49 = add nsw i32 %j.011, %mul48
%sh_prom50 = zext i32 %add49 to i64
%inc72 = add nsw i32 %j.011, 1
br i1 false, label %for.body43, label %for.inc74
for.inc74:
%inc76 = add nsw i32 %i.113, 1
br i1 false, label %for.body38, label %for.body87.preheader
for.body87.preheader:
br label %for.body87
for.body87:
br label %for.body87
}
; PR16130: clang produces incorrect code with loop/expression at -O2
; rdar:14036816 loop-unroll makes assumptions about undefined behavior
;
; The loop latch is assumed to exit after the first iteration because
; of the induction variable's NSW flag. However, the loop latch's
; equality test is skipped and the loop exits after the second
; iteration via the early exit. So loop unrolling cannot assume that
; the loop latch's exit count of zero is an upper bound on the number
; of iterations.
define void @nsw_latch(ptr %a) nounwind {
; CHECK-LABEL: @nsw_latch(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: br label [[FOR_COND:%.*]]
; CHECK: for.cond:
; CHECK-NEXT: br i1 false, label [[RETURN:%.*]], label [[FOR_BODY_1:%.*]]
; CHECK: for.body.1:
; CHECK-NEXT: br i1 false, label [[FOR_COND_1:%.*]], label [[RETURN]]
; CHECK: for.cond.1:
; CHECK-NEXT: br label [[RETURN]]
; CHECK: return:
; CHECK-NEXT: [[B_03_LCSSA:%.*]] = phi i32 [ 0, [[FOR_COND]] ], [ 8, [[FOR_BODY_1]] ], [ 0, [[FOR_COND_1]] ]
; CHECK-NEXT: [[RETVAL_0:%.*]] = phi i32 [ 0, [[FOR_COND]] ], [ 1, [[FOR_BODY_1]] ], [ 0, [[FOR_COND_1]] ]
; CHECK-NEXT: store i32 [[B_03_LCSSA]], ptr [[A:%.*]], align 4
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body: ; preds = %for.cond, %entry
%b.03 = phi i32 [ 0, %entry ], [ %add, %for.cond ]
%tobool = icmp eq i32 %b.03, 0
%add = add nsw i32 %b.03, 8
br i1 %tobool, label %for.cond, label %return
for.cond: ; preds = %for.body
%cmp = icmp eq i32 %add, 13
br i1 %cmp, label %return, label %for.body
return: ; preds = %for.body, %for.cond
%b.03.lcssa = phi i32 [ %b.03, %for.body ], [ %b.03, %for.cond ]
%retval.0 = phi i32 [ 1, %for.body ], [ 0, %for.cond ]
store i32 %b.03.lcssa, ptr %a, align 4
ret void
}
; Test case for PR56044. Check that SCEVs for exit phis are properly invalidated.
define i32 @test_pr56044(ptr %src, i32 %a) {
; CHECK-LABEL: @test_pr56044(
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[LOOP_1_PEEL_BEGIN:%.*]]
; CHECK: loop.1.peel.begin:
; CHECK-NEXT: br label [[LOOP_1_PEEL:%.*]]
; CHECK: loop.1.peel:
; CHECK-NEXT: call void @fn(i32 5)
; CHECK-NEXT: [[L_PEEL:%.*]] = load i64, ptr [[SRC:%.*]], align 8
; CHECK-NEXT: [[ADD_PEEL:%.*]] = add i64 [[L_PEEL]], [[L_PEEL]]
; CHECK-NEXT: [[EC_1_PEEL:%.*]] = icmp sgt i32 [[A:%.*]], 4
; CHECK-NEXT: br i1 [[EC_1_PEEL]], label [[MID:%.*]], label [[LOOP_1_PEEL_NEXT:%.*]]
; CHECK: loop.1.peel.next:
; CHECK-NEXT: br label [[LOOP_1_PEEL_NEXT1:%.*]]
; CHECK: loop.1.peel.next1:
; CHECK-NEXT: br label [[ENTRY_PEEL_NEWPH:%.*]]
; CHECK: entry.peel.newph:
; CHECK-NEXT: br label [[LOOP_1:%.*]]
; CHECK: loop.1:
; CHECK-NEXT: call void @fn(i32 18)
; CHECK-NEXT: [[L:%.*]] = load i64, ptr [[SRC]], align 8
; CHECK-NEXT: [[ADD:%.*]] = add i64 [[L]], [[L]]
; CHECK-NEXT: [[EC_1:%.*]] = icmp sgt i32 [[A]], 4
; CHECK-NEXT: br i1 [[EC_1]], label [[MID_LOOPEXIT:%.*]], label [[LOOP_1]], !llvm.loop [[LOOP0:![0-9]+]]
; CHECK: mid.loopexit:
; CHECK-NEXT: [[LCSSA_1_PH:%.*]] = phi i64 [ [[ADD]], [[LOOP_1]] ]
; CHECK-NEXT: br label [[MID]]
; CHECK: mid:
; CHECK-NEXT: [[LCSSA_1:%.*]] = phi i64 [ [[ADD_PEEL]], [[LOOP_1_PEEL]] ], [ [[LCSSA_1_PH]], [[MID_LOOPEXIT]] ]
; CHECK-NEXT: [[TRUNC:%.*]] = trunc i64 [[LCSSA_1]] to i32
; CHECK-NEXT: [[ADD_2:%.*]] = sub i32 [[A]], [[TRUNC]]
; CHECK-NEXT: br label [[LOOP_2_PEEL_BEGIN:%.*]]
; CHECK: loop.2.peel.begin:
; CHECK-NEXT: br label [[LOOP_2_PEEL:%.*]]
; CHECK: loop.2.peel:
; CHECK-NEXT: [[IV_2_NEXT_PEEL:%.*]] = add i32 0, [[ADD_2]]
; CHECK-NEXT: [[IV_1_NEXT_PEEL:%.*]] = add nuw nsw i32 0, 1
; CHECK-NEXT: [[EC_2_PEEL:%.*]] = icmp ult i32 [[IV_1_NEXT_PEEL]], 12345
; CHECK-NEXT: br i1 [[EC_2_PEEL]], label [[LOOP_2_PEEL_NEXT:%.*]], label [[EXIT:%.*]]
; CHECK: loop.2.peel.next:
; CHECK-NEXT: br label [[LOOP_2_PEEL_NEXT2:%.*]]
; CHECK: loop.2.peel.next2:
; CHECK-NEXT: br label [[MID_PEEL_NEWPH:%.*]]
; CHECK: mid.peel.newph:
; CHECK-NEXT: br label [[LOOP_2:%.*]]
; CHECK: loop.2:
; CHECK-NEXT: [[IV_1:%.*]] = phi i32 [ [[IV_1_NEXT_PEEL]], [[MID_PEEL_NEWPH]] ], [ [[IV_1_NEXT:%.*]], [[LOOP_2]] ]
; CHECK-NEXT: [[IV_2:%.*]] = phi i32 [ [[IV_2_NEXT_PEEL]], [[MID_PEEL_NEWPH]] ], [ [[IV_2_NEXT:%.*]], [[LOOP_2]] ]
; CHECK-NEXT: [[IV_2_NEXT]] = add i32 2, [[IV_2]]
; CHECK-NEXT: [[IV_1_NEXT]] = add nuw nsw i32 [[IV_1]], 1
; CHECK-NEXT: [[EC_2:%.*]] = icmp ult i32 [[IV_1_NEXT]], 12345
; CHECK-NEXT: br i1 [[EC_2]], label [[LOOP_2]], label [[EXIT_LOOPEXIT:%.*]], !llvm.loop [[LOOP2:![0-9]+]]
; CHECK: exit.loopexit:
; CHECK-NEXT: [[LCSSA_2_PH:%.*]] = phi i32 [ [[IV_2_NEXT]], [[LOOP_2]] ]
; CHECK-NEXT: br label [[EXIT]]
; CHECK: exit:
; CHECK-NEXT: [[LCSSA_2:%.*]] = phi i32 [ [[IV_2_NEXT_PEEL]], [[LOOP_2_PEEL]] ], [ [[LCSSA_2_PH]], [[EXIT_LOOPEXIT]] ]
; CHECK-NEXT: ret i32 [[LCSSA_2]]
;
entry:
br label %loop.1
loop.1:
%p.1 = phi i32 [ 5, %entry ], [ 18, %loop.1 ]
call void @fn(i32 %p.1)
%l = load i64, ptr %src, align 8
%add = add i64 %l, %l
%ec.1 = icmp sgt i32 %a, 4
br i1 %ec.1, label %mid, label %loop.1
mid:
%lcssa.1 = phi i64 [ %add, %loop.1 ]
%trunc = trunc i64 %lcssa.1 to i32
%add.2 = sub i32 %a, %trunc
br label %loop.2
loop.2:
%iv.1 = phi i32 [ 0, %mid ], [ %iv.1.next, %loop.2 ]
%iv.2 = phi i32 [ %add.2, %mid ], [ %iv.2.next, %loop.2 ]
%p.2 = phi i32 [ 0, %mid ], [ 2, %loop.2 ]
%iv.2.next = add i32 %p.2, %iv.2
%iv.1.next = add nuw nsw i32 %iv.1, 1
%ec.2 = icmp ult i32 %iv.1.next, 12345
br i1 %ec.2, label %loop.2, label %exit
exit:
%lcssa.2 = phi i32 [ %iv.2.next, %loop.2 ]
ret i32 %lcssa.2
}
declare void @fn(i32)
|