| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 
 | //===-- SchedClassResolution.cpp --------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SchedClassResolution.h"
#include "BenchmarkResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MCA/Support.h"
#include "llvm/Support/FormatVariadic.h"
#include <limits>
#include <unordered_set>
#include <vector>
namespace llvm {
namespace exegesis {
// Return the non-redundant list of WriteProcRes used by the given sched class.
// The scheduling model for LLVM is such that each instruction has a certain
// number of uops which consume resources which are described by WriteProcRes
// entries. Each entry describe how many cycles are spent on a specific ProcRes
// kind.
// For example, an instruction might have 3 uOps, one dispatching on P0
// (ProcResIdx=1) and two on P06 (ProcResIdx = 7).
// Note that LLVM additionally denormalizes resource consumption to include
// usage of super resources by subresources. So in practice if there exists a
// P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by
// P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed
// by P06 are also consumed by P016. In the figure below, parenthesized cycles
// denote implied usage of superresources by subresources:
//            P0      P06    P016
//     uOp1    1      (1)     (1)
//     uOp2            1      (1)
//     uOp3            1      (1)
//     =============================
//             1       3       3
// Eventually we end up with three entries for the WriteProcRes of the
// instruction:
//    {ProcResIdx=1,  Cycles=1}  // P0
//    {ProcResIdx=7,  Cycles=3}  // P06
//    {ProcResIdx=10, Cycles=3}  // P016
//
// Note that in this case, P016 does not contribute any cycles, so it would
// be removed by this function.
// FIXME: Merge this with the equivalent in llvm-mca.
static SmallVector<MCWriteProcResEntry, 8>
getNonRedundantWriteProcRes(const MCSchedClassDesc &SCDesc,
                            const MCSubtargetInfo &STI) {
  SmallVector<MCWriteProcResEntry, 8> Result;
  const auto &SM = STI.getSchedModel();
  const unsigned NumProcRes = SM.getNumProcResourceKinds();
  // Collect resource masks.
  SmallVector<uint64_t> ProcResourceMasks(NumProcRes);
  mca::computeProcResourceMasks(SM, ProcResourceMasks);
  // Sort entries by smaller resources for (basic) topological ordering.
  using ResourceMaskAndEntry = std::pair<uint64_t, const MCWriteProcResEntry *>;
  SmallVector<ResourceMaskAndEntry, 8> ResourceMaskAndEntries;
  for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc),
                  *const WPREnd = STI.getWriteProcResEnd(&SCDesc);
       WPR != WPREnd; ++WPR) {
    uint64_t Mask = ProcResourceMasks[WPR->ProcResourceIdx];
    ResourceMaskAndEntries.push_back({Mask, WPR});
  }
  sort(ResourceMaskAndEntries,
       [](const ResourceMaskAndEntry &A, const ResourceMaskAndEntry &B) {
         unsigned popcntA = llvm::popcount(A.first);
         unsigned popcntB = llvm::popcount(B.first);
         if (popcntA < popcntB)
           return true;
         if (popcntA > popcntB)
           return false;
         return A.first < B.first;
       });
  SmallVector<float, 32> ProcResUnitUsage(NumProcRes);
  for (const ResourceMaskAndEntry &Entry : ResourceMaskAndEntries) {
    const MCWriteProcResEntry *WPR = Entry.second;
    const MCProcResourceDesc *const ProcResDesc =
        SM.getProcResource(WPR->ProcResourceIdx);
    if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
      // This is a ProcResUnit.
      Result.push_back({WPR->ProcResourceIdx, WPR->Cycles});
      ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles;
    } else {
      // This is a ProcResGroup. First see if it contributes any cycles or if
      // it has cycles just from subunits.
      float RemainingCycles = WPR->Cycles;
      for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
           SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
           ++SubResIdx) {
        RemainingCycles -= ProcResUnitUsage[*SubResIdx];
      }
      if (RemainingCycles < 0.01f) {
        // The ProcResGroup contributes no cycles of its own.
        continue;
      }
      // The ProcResGroup contributes `RemainingCycles` cycles of its own.
      Result.push_back({WPR->ProcResourceIdx,
                        static_cast<uint16_t>(std::round(RemainingCycles))});
      // Spread the remaining cycles over all subunits.
      for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin;
           SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits;
           ++SubResIdx) {
        ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits;
      }
    }
  }
  return Result;
}
// Distributes a pressure budget as evenly as possible on the provided subunits
// given the already existing port pressure distribution.
//
// The algorithm is as follows: while there is remaining pressure to
// distribute, find the subunits with minimal pressure, and distribute
// remaining pressure equally up to the pressure of the unit with
// second-to-minimal pressure.
// For example, let's assume we want to distribute 2*P1256
// (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is:
//     DensePressure =        P0   P1   P2   P3   P4   P5   P6   P7
//                           0.1  0.3  0.2  0.0  0.0  0.5  0.5  0.5
//     RemainingPressure = 2.0
// We sort the subunits by pressure:
//     Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)]
// We'll first start by the subunits with minimal pressure, which are at
// the beginning of the sorted array. In this example there is one (P2).
// The subunit with second-to-minimal pressure is the next one in the
// array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles
// from the budget.
//     Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)]
//     RemainingPressure = 1.9
// We repeat this process: distribute 0.2 pressure on each of the minimal
// P2 and P1, decrease budget by 2*0.2:
//     Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)]
//     RemainingPressure = 1.5
// There are no second-to-minimal subunits so we just share the remaining
// budget (1.5 cycles) equally:
//     Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)]
//     RemainingPressure = 0.0
// We stop as there is no remaining budget to distribute.
static void distributePressure(float RemainingPressure,
                               SmallVector<uint16_t, 32> Subunits,
                               SmallVector<float, 32> &DensePressure) {
  // Find the number of subunits with minimal pressure (they are at the
  // front).
  sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) {
    return DensePressure[A] < DensePressure[B];
  });
  const auto getPressureForSubunit = [&DensePressure,
                                      &Subunits](size_t I) -> float & {
    return DensePressure[Subunits[I]];
  };
  size_t NumMinimalSU = 1;
  while (NumMinimalSU < Subunits.size() &&
         getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) {
    ++NumMinimalSU;
  }
  while (RemainingPressure > 0.0f) {
    if (NumMinimalSU == Subunits.size()) {
      // All units are minimal, just distribute evenly and be done.
      for (size_t I = 0; I < NumMinimalSU; ++I) {
        getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
      }
      return;
    }
    // Distribute the remaining pressure equally.
    const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1);
    const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU);
    assert(MinimalPressure < SecondToMinimalPressure);
    const float Increment = SecondToMinimalPressure - MinimalPressure;
    if (RemainingPressure <= NumMinimalSU * Increment) {
      // There is not enough remaining pressure.
      for (size_t I = 0; I < NumMinimalSU; ++I) {
        getPressureForSubunit(I) += RemainingPressure / NumMinimalSU;
      }
      return;
    }
    // Bump all minimal pressure subunits to `SecondToMinimalPressure`.
    for (size_t I = 0; I < NumMinimalSU; ++I) {
      getPressureForSubunit(I) = SecondToMinimalPressure;
      RemainingPressure -= SecondToMinimalPressure;
    }
    while (NumMinimalSU < Subunits.size() &&
           getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) {
      ++NumMinimalSU;
    }
  }
}
std::vector<std::pair<uint16_t, float>>
computeIdealizedProcResPressure(const MCSchedModel &SM,
                                SmallVector<MCWriteProcResEntry, 8> WPRS) {
  // DensePressure[I] is the port pressure for Proc Resource I.
  SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds());
  sort(WPRS, [](const MCWriteProcResEntry &A, const MCWriteProcResEntry &B) {
    return A.ProcResourceIdx < B.ProcResourceIdx;
  });
  for (const MCWriteProcResEntry &WPR : WPRS) {
    // Get units for the entry.
    const MCProcResourceDesc *const ProcResDesc =
        SM.getProcResource(WPR.ProcResourceIdx);
    if (ProcResDesc->SubUnitsIdxBegin == nullptr) {
      // This is a ProcResUnit.
      DensePressure[WPR.ProcResourceIdx] += WPR.Cycles;
    } else {
      // This is a ProcResGroup.
      SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin,
                                         ProcResDesc->SubUnitsIdxBegin +
                                             ProcResDesc->NumUnits);
      distributePressure(WPR.Cycles, Subunits, DensePressure);
    }
  }
  // Turn dense pressure into sparse pressure by removing zero entries.
  std::vector<std::pair<uint16_t, float>> Pressure;
  for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) {
    if (DensePressure[I] > 0.0f)
      Pressure.emplace_back(I, DensePressure[I]);
  }
  return Pressure;
}
ResolvedSchedClass::ResolvedSchedClass(const MCSubtargetInfo &STI,
                                       unsigned ResolvedSchedClassId,
                                       bool WasVariant)
    : SchedClassId(ResolvedSchedClassId),
      SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)),
      WasVariant(WasVariant),
      NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)),
      IdealizedProcResPressure(computeIdealizedProcResPressure(
          STI.getSchedModel(), NonRedundantWriteProcRes)) {
  assert((SCDesc == nullptr || !SCDesc->isVariant()) &&
         "ResolvedSchedClass should never be variant");
}
static unsigned ResolveVariantSchedClassId(const MCSubtargetInfo &STI,
                                           const MCInstrInfo &InstrInfo,
                                           unsigned SchedClassId,
                                           const MCInst &MCI) {
  const auto &SM = STI.getSchedModel();
  while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant()) {
    SchedClassId = STI.resolveVariantSchedClass(SchedClassId, &MCI, &InstrInfo,
                                                SM.getProcessorID());
  }
  return SchedClassId;
}
std::pair<unsigned /*SchedClassId*/, bool /*WasVariant*/>
ResolvedSchedClass::resolveSchedClassId(const MCSubtargetInfo &SubtargetInfo,
                                        const MCInstrInfo &InstrInfo,
                                        const MCInst &MCI) {
  unsigned SchedClassId = InstrInfo.get(MCI.getOpcode()).getSchedClass();
  const bool WasVariant = SchedClassId && SubtargetInfo.getSchedModel()
                                              .getSchedClassDesc(SchedClassId)
                                              ->isVariant();
  SchedClassId =
      ResolveVariantSchedClassId(SubtargetInfo, InstrInfo, SchedClassId, MCI);
  return std::make_pair(SchedClassId, WasVariant);
}
// Returns a ProxResIdx by id or name.
static unsigned findProcResIdx(const MCSubtargetInfo &STI,
                               const StringRef NameOrId) {
  // Interpret the key as an ProcResIdx.
  unsigned ProcResIdx = 0;
  if (to_integer(NameOrId, ProcResIdx, 10))
    return ProcResIdx;
  // Interpret the key as a ProcRes name.
  const auto &SchedModel = STI.getSchedModel();
  for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) {
    if (NameOrId == SchedModel.getProcResource(I)->Name)
      return I;
  }
  return 0;
}
std::vector<BenchmarkMeasure> ResolvedSchedClass::getAsPoint(
    InstructionBenchmark::ModeE Mode, const MCSubtargetInfo &STI,
    ArrayRef<PerInstructionStats> Representative) const {
  const size_t NumMeasurements = Representative.size();
  std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements);
  if (Mode == InstructionBenchmark::Latency) {
    assert(NumMeasurements == 1 && "Latency is a single measure.");
    BenchmarkMeasure &LatencyMeasure = SchedClassPoint[0];
    // Find the latency.
    LatencyMeasure.PerInstructionValue = 0.0;
    for (unsigned I = 0; I < SCDesc->NumWriteLatencyEntries; ++I) {
      const MCWriteLatencyEntry *const WLE =
          STI.getWriteLatencyEntry(SCDesc, I);
      LatencyMeasure.PerInstructionValue =
          std::max<double>(LatencyMeasure.PerInstructionValue, WLE->Cycles);
    }
  } else if (Mode == InstructionBenchmark::Uops) {
    for (auto I : zip(SchedClassPoint, Representative)) {
      BenchmarkMeasure &Measure = std::get<0>(I);
      const PerInstructionStats &Stats = std::get<1>(I);
      StringRef Key = Stats.key();
      uint16_t ProcResIdx = findProcResIdx(STI, Key);
      if (ProcResIdx > 0) {
        // Find the pressure on ProcResIdx `Key`.
        const auto ProcResPressureIt =
            llvm::find_if(IdealizedProcResPressure,
                          [ProcResIdx](const std::pair<uint16_t, float> &WPR) {
                            return WPR.first == ProcResIdx;
                          });
        Measure.PerInstructionValue =
            ProcResPressureIt == IdealizedProcResPressure.end()
                ? 0.0
                : ProcResPressureIt->second;
      } else if (Key == "NumMicroOps") {
        Measure.PerInstructionValue = SCDesc->NumMicroOps;
      } else {
        errs() << "expected `key` to be either a ProcResIdx or a ProcRes "
                  "name, got "
               << Key << "\n";
        return {};
      }
    }
  } else if (Mode == InstructionBenchmark::InverseThroughput) {
    assert(NumMeasurements == 1 && "Inverse Throughput is a single measure.");
    BenchmarkMeasure &RThroughputMeasure = SchedClassPoint[0];
    RThroughputMeasure.PerInstructionValue =
        MCSchedModel::getReciprocalThroughput(STI, *SCDesc);
  } else {
    llvm_unreachable("unimplemented measurement matching mode");
  }
  return SchedClassPoint;
}
} // namespace exegesis
} // namespace llvm
 |