| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 
 | //===-- SerialSnippetGenerator.cpp ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SerialSnippetGenerator.h"
#include "CodeTemplate.h"
#include "MCInstrDescView.h"
#include "Target.h"
#include <algorithm>
#include <numeric>
#include <vector>
namespace llvm {
namespace exegesis {
struct ExecutionClass {
  ExecutionMode Mask;
  const char *Description;
} static const kExecutionClasses[] = {
    {ExecutionMode::ALWAYS_SERIAL_IMPLICIT_REGS_ALIAS |
         ExecutionMode::ALWAYS_SERIAL_TIED_REGS_ALIAS,
     "Repeating a single implicitly serial instruction"},
    {ExecutionMode::SERIAL_VIA_EXPLICIT_REGS,
     "Repeating a single explicitly serial instruction"},
    {ExecutionMode::SERIAL_VIA_MEMORY_INSTR |
         ExecutionMode::SERIAL_VIA_NON_MEMORY_INSTR,
     "Repeating two instructions"},
};
static constexpr size_t kMaxAliasingInstructions = 10;
static std::vector<const Instruction *>
computeAliasingInstructions(const LLVMState &State, const Instruction *Instr,
                            size_t MaxAliasingInstructions,
                            const BitVector &ForbiddenRegisters) {
  // Randomly iterate the set of instructions.
  std::vector<unsigned> Opcodes;
  Opcodes.resize(State.getInstrInfo().getNumOpcodes());
  std::iota(Opcodes.begin(), Opcodes.end(), 0U);
  llvm::shuffle(Opcodes.begin(), Opcodes.end(), randomGenerator());
  std::vector<const Instruction *> AliasingInstructions;
  for (const unsigned OtherOpcode : Opcodes) {
    if (OtherOpcode == Instr->Description.getOpcode())
      continue;
    const Instruction &OtherInstr = State.getIC().getInstr(OtherOpcode);
    const MCInstrDesc &OtherInstrDesc = OtherInstr.Description;
    // Ignore instructions that we cannot run.
    if (OtherInstrDesc.isPseudo() || OtherInstrDesc.usesCustomInsertionHook() ||
        OtherInstrDesc.isBranch() || OtherInstrDesc.isIndirectBranch() ||
        OtherInstrDesc.isCall() || OtherInstrDesc.isReturn()) {
          continue;
    }
    if (OtherInstr.hasMemoryOperands())
      continue;
    if (!State.getExegesisTarget().allowAsBackToBack(OtherInstr))
      continue;
    if (Instr->hasAliasingRegistersThrough(OtherInstr, ForbiddenRegisters))
      AliasingInstructions.push_back(&OtherInstr);
    if (AliasingInstructions.size() >= MaxAliasingInstructions)
      break;
  }
  return AliasingInstructions;
}
static ExecutionMode getExecutionModes(const Instruction &Instr,
                                       const BitVector &ForbiddenRegisters) {
  ExecutionMode EM = ExecutionMode::UNKNOWN;
  if (Instr.hasAliasingImplicitRegisters())
    EM |= ExecutionMode::ALWAYS_SERIAL_IMPLICIT_REGS_ALIAS;
  if (Instr.hasTiedRegisters())
    EM |= ExecutionMode::ALWAYS_SERIAL_TIED_REGS_ALIAS;
  if (Instr.hasMemoryOperands())
    EM |= ExecutionMode::SERIAL_VIA_MEMORY_INSTR;
  else {
    if (Instr.hasAliasingRegisters(ForbiddenRegisters))
      EM |= ExecutionMode::SERIAL_VIA_EXPLICIT_REGS;
    if (Instr.hasOneUseOrOneDef())
      EM |= ExecutionMode::SERIAL_VIA_NON_MEMORY_INSTR;
  }
  return EM;
}
static void appendCodeTemplates(const LLVMState &State,
                                InstructionTemplate Variant,
                                const BitVector &ForbiddenRegisters,
                                ExecutionMode ExecutionModeBit,
                                StringRef ExecutionClassDescription,
                                std::vector<CodeTemplate> &CodeTemplates) {
  assert(isEnumValue(ExecutionModeBit) && "Bit must be a power of two");
  switch (ExecutionModeBit) {
  case ExecutionMode::ALWAYS_SERIAL_IMPLICIT_REGS_ALIAS:
    // Nothing to do, the instruction is always serial.
    [[fallthrough]];
  case ExecutionMode::ALWAYS_SERIAL_TIED_REGS_ALIAS: {
    // Picking whatever value for the tied variable will make the instruction
    // serial.
    CodeTemplate CT;
    CT.Execution = ExecutionModeBit;
    CT.Info = std::string(ExecutionClassDescription);
    CT.Instructions.push_back(std::move(Variant));
    CodeTemplates.push_back(std::move(CT));
    return;
  }
  case ExecutionMode::SERIAL_VIA_MEMORY_INSTR: {
    // Select back-to-back memory instruction.
    // TODO: Implement me.
    return;
  }
  case ExecutionMode::SERIAL_VIA_EXPLICIT_REGS: {
    // Making the execution of this instruction serial by selecting one def
    // register to alias with one use register.
    const AliasingConfigurations SelfAliasing(
        Variant.getInstr(), Variant.getInstr(), ForbiddenRegisters);
    assert(!SelfAliasing.empty() && !SelfAliasing.hasImplicitAliasing() &&
           "Instr must alias itself explicitly");
    // This is a self aliasing instruction so defs and uses are from the same
    // instance, hence twice Variant in the following call.
    setRandomAliasing(SelfAliasing, Variant, Variant);
    CodeTemplate CT;
    CT.Execution = ExecutionModeBit;
    CT.Info = std::string(ExecutionClassDescription);
    CT.Instructions.push_back(std::move(Variant));
    CodeTemplates.push_back(std::move(CT));
    return;
  }
  case ExecutionMode::SERIAL_VIA_NON_MEMORY_INSTR: {
    const Instruction &Instr = Variant.getInstr();
    // Select back-to-back non-memory instruction.
    for (const auto *OtherInstr : computeAliasingInstructions(
             State, &Instr, kMaxAliasingInstructions, ForbiddenRegisters)) {
      const AliasingConfigurations Forward(Instr, *OtherInstr,
                                           ForbiddenRegisters);
      const AliasingConfigurations Back(*OtherInstr, Instr, ForbiddenRegisters);
      InstructionTemplate ThisIT(Variant);
      InstructionTemplate OtherIT(OtherInstr);
      if (!Forward.hasImplicitAliasing())
        setRandomAliasing(Forward, ThisIT, OtherIT);
      else if (!Back.hasImplicitAliasing())
        setRandomAliasing(Back, OtherIT, ThisIT);
      CodeTemplate CT;
      CT.Execution = ExecutionModeBit;
      CT.Info = std::string(ExecutionClassDescription);
      CT.Instructions.push_back(std::move(ThisIT));
      CT.Instructions.push_back(std::move(OtherIT));
      CodeTemplates.push_back(std::move(CT));
    }
    return;
  }
  default:
    llvm_unreachable("Unhandled enum value");
  }
}
SerialSnippetGenerator::~SerialSnippetGenerator() = default;
Expected<std::vector<CodeTemplate>>
SerialSnippetGenerator::generateCodeTemplates(
    InstructionTemplate Variant, const BitVector &ForbiddenRegisters) const {
  std::vector<CodeTemplate> Results;
  const ExecutionMode EM =
      getExecutionModes(Variant.getInstr(), ForbiddenRegisters);
  for (const auto EC : kExecutionClasses) {
    for (const auto ExecutionModeBit : getExecutionModeBits(EM & EC.Mask))
      appendCodeTemplates(State, Variant, ForbiddenRegisters, ExecutionModeBit,
                          EC.Description, Results);
    if (!Results.empty())
      break;
  }
  if (Results.empty())
    return make_error<Failure>(
        "No strategy found to make the execution serial");
  return std::move(Results);
}
} // namespace exegesis
} // namespace llvm
 |