| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 
 | //===-- SnippetGenerator.cpp ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <array>
#include <string>
#include "Assembler.h"
#include "Error.h"
#include "MCInstrDescView.h"
#include "SnippetGenerator.h"
#include "Target.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Program.h"
namespace llvm {
namespace exegesis {
std::vector<CodeTemplate> getSingleton(CodeTemplate &&CT) {
  std::vector<CodeTemplate> Result;
  Result.push_back(std::move(CT));
  return Result;
}
SnippetGeneratorFailure::SnippetGeneratorFailure(const Twine &S)
    : StringError(S, inconvertibleErrorCode()) {}
SnippetGenerator::SnippetGenerator(const LLVMState &State, const Options &Opts)
    : State(State), Opts(Opts) {}
SnippetGenerator::~SnippetGenerator() = default;
Error SnippetGenerator::generateConfigurations(
    const InstructionTemplate &Variant, std::vector<BenchmarkCode> &Benchmarks,
    const BitVector &ExtraForbiddenRegs) const {
  BitVector ForbiddenRegs = State.getRATC().reservedRegisters();
  ForbiddenRegs |= ExtraForbiddenRegs;
  // If the instruction has memory registers, prevent the generator from
  // using the scratch register and its aliasing registers.
  if (Variant.getInstr().hasMemoryOperands()) {
    const auto &ET = State.getExegesisTarget();
    unsigned ScratchSpacePointerInReg =
        ET.getScratchMemoryRegister(State.getTargetMachine().getTargetTriple());
    if (ScratchSpacePointerInReg == 0)
      return make_error<Failure>(
          "Infeasible : target does not support memory instructions");
    const auto &ScratchRegAliases =
        State.getRATC().getRegister(ScratchSpacePointerInReg).aliasedBits();
    // If the instruction implicitly writes to ScratchSpacePointerInReg , abort.
    // FIXME: We could make a copy of the scratch register.
    for (const auto &Op : Variant.getInstr().Operands) {
      if (Op.isDef() && Op.isImplicitReg() &&
          ScratchRegAliases.test(Op.getImplicitReg()))
        return make_error<Failure>(
            "Infeasible : memory instruction uses scratch memory register");
    }
    ForbiddenRegs |= ScratchRegAliases;
  }
  if (auto E = generateCodeTemplates(Variant, ForbiddenRegs)) {
    MutableArrayRef<CodeTemplate> Templates = E.get();
    // Avoid reallocations in the loop.
    Benchmarks.reserve(Benchmarks.size() + Templates.size());
    for (CodeTemplate &CT : Templates) {
      // TODO: Generate as many BenchmarkCode as needed.
      {
        BenchmarkCode BC;
        BC.Info = CT.Info;
        BC.Key.Instructions.reserve(CT.Instructions.size());
        for (InstructionTemplate &IT : CT.Instructions) {
          if (auto error = randomizeUnsetVariables(State, ForbiddenRegs, IT))
            return error;
          BC.Key.Instructions.push_back(IT.build());
        }
        if (CT.ScratchSpacePointerInReg)
          BC.LiveIns.push_back(CT.ScratchSpacePointerInReg);
        BC.Key.RegisterInitialValues =
            computeRegisterInitialValues(CT.Instructions);
        BC.Key.Config = CT.Config;
        Benchmarks.emplace_back(std::move(BC));
        if (Benchmarks.size() >= Opts.MaxConfigsPerOpcode) {
          // We reached the number of  allowed configs and return early.
          return Error::success();
        }
      }
    }
    return Error::success();
  } else
    return E.takeError();
}
std::vector<RegisterValue> SnippetGenerator::computeRegisterInitialValues(
    const std::vector<InstructionTemplate> &Instructions) const {
  // Collect all register uses and create an assignment for each of them.
  // Ignore memory operands which are handled separately.
  // Loop invariant: DefinedRegs[i] is true iif it has been set at least once
  // before the current instruction.
  BitVector DefinedRegs = State.getRATC().emptyRegisters();
  std::vector<RegisterValue> RIV;
  for (const InstructionTemplate &IT : Instructions) {
    // Returns the register that this Operand sets or uses, or 0 if this is not
    // a register.
    const auto GetOpReg = [&IT](const Operand &Op) -> unsigned {
      if (Op.isMemory())
        return 0;
      if (Op.isImplicitReg())
        return Op.getImplicitReg();
      if (Op.isExplicit() && IT.getValueFor(Op).isReg())
        return IT.getValueFor(Op).getReg();
      return 0;
    };
    // Collect used registers that have never been def'ed.
    for (const Operand &Op : IT.getInstr().Operands) {
      if (Op.isUse()) {
        const unsigned Reg = GetOpReg(Op);
        if (Reg > 0 && !DefinedRegs.test(Reg)) {
          RIV.push_back(RegisterValue::zero(Reg));
          DefinedRegs.set(Reg);
        }
      }
    }
    // Mark defs as having been def'ed.
    for (const Operand &Op : IT.getInstr().Operands) {
      if (Op.isDef()) {
        const unsigned Reg = GetOpReg(Op);
        if (Reg > 0)
          DefinedRegs.set(Reg);
      }
    }
  }
  return RIV;
}
Expected<std::vector<CodeTemplate>>
generateSelfAliasingCodeTemplates(InstructionTemplate Variant,
                                  const BitVector &ForbiddenRegisters) {
  const AliasingConfigurations SelfAliasing(
      Variant.getInstr(), Variant.getInstr(), ForbiddenRegisters);
  if (SelfAliasing.empty())
    return make_error<SnippetGeneratorFailure>("empty self aliasing");
  std::vector<CodeTemplate> Result;
  Result.emplace_back();
  CodeTemplate &CT = Result.back();
  if (SelfAliasing.hasImplicitAliasing()) {
    CT.Info = "implicit Self cycles, picking random values.";
  } else {
    CT.Info = "explicit self cycles, selecting one aliasing Conf.";
    // This is a self aliasing instruction so defs and uses are from the same
    // instance, hence twice Variant in the following call.
    setRandomAliasing(SelfAliasing, Variant, Variant);
  }
  CT.Instructions.push_back(std::move(Variant));
  return std::move(Result);
}
Expected<std::vector<CodeTemplate>>
generateUnconstrainedCodeTemplates(const InstructionTemplate &Variant,
                                   StringRef Msg) {
  std::vector<CodeTemplate> Result;
  Result.emplace_back();
  CodeTemplate &CT = Result.back();
  CT.Info =
      std::string(formatv("{0}, repeating an unconstrained assignment", Msg));
  CT.Instructions.push_back(std::move(Variant));
  return std::move(Result);
}
std::mt19937 &randomGenerator() {
  static std::random_device RandomDevice;
  static std::mt19937 RandomGenerator(RandomDevice());
  return RandomGenerator;
}
size_t randomIndex(size_t Max) {
  std::uniform_int_distribution<> Distribution(0, Max);
  return Distribution(randomGenerator());
}
template <typename C> static decltype(auto) randomElement(const C &Container) {
  assert(!Container.empty() &&
         "Can't pick a random element from an empty container)");
  return Container[randomIndex(Container.size() - 1)];
}
static void setRegisterOperandValue(const RegisterOperandAssignment &ROV,
                                    InstructionTemplate &IB) {
  assert(ROV.Op);
  if (ROV.Op->isExplicit()) {
    auto &AssignedValue = IB.getValueFor(*ROV.Op);
    if (AssignedValue.isValid()) {
      assert(AssignedValue.isReg() && AssignedValue.getReg() == ROV.Reg);
      return;
    }
    AssignedValue = MCOperand::createReg(ROV.Reg);
  } else {
    assert(ROV.Op->isImplicitReg());
    assert(ROV.Reg == ROV.Op->getImplicitReg());
  }
}
size_t randomBit(const BitVector &Vector) {
  assert(Vector.any());
  auto Itr = Vector.set_bits_begin();
  for (size_t I = randomIndex(Vector.count() - 1); I != 0; --I)
    ++Itr;
  return *Itr;
}
std::optional<int> getFirstCommonBit(const BitVector &A, const BitVector &B) {
  BitVector Intersect = A;
  Intersect &= B;
  int idx = Intersect.find_first();
  if (idx != -1)
    return idx;
  return {};
}
void setRandomAliasing(const AliasingConfigurations &AliasingConfigurations,
                       InstructionTemplate &DefIB, InstructionTemplate &UseIB) {
  assert(!AliasingConfigurations.empty());
  assert(!AliasingConfigurations.hasImplicitAliasing());
  const auto &RandomConf = randomElement(AliasingConfigurations.Configurations);
  setRegisterOperandValue(randomElement(RandomConf.Defs), DefIB);
  setRegisterOperandValue(randomElement(RandomConf.Uses), UseIB);
}
static Error randomizeMCOperand(const LLVMState &State,
                                const Instruction &Instr, const Variable &Var,
                                MCOperand &AssignedValue,
                                const BitVector &ForbiddenRegs) {
  const Operand &Op = Instr.getPrimaryOperand(Var);
  if (Op.getExplicitOperandInfo().OperandType >=
      MCOI::OperandType::OPERAND_FIRST_TARGET)
    return State.getExegesisTarget().randomizeTargetMCOperand(
        Instr, Var, AssignedValue, ForbiddenRegs);
  switch (Op.getExplicitOperandInfo().OperandType) {
  case MCOI::OperandType::OPERAND_IMMEDIATE:
    // FIXME: explore immediate values too.
    AssignedValue = MCOperand::createImm(1);
    break;
  case MCOI::OperandType::OPERAND_REGISTER: {
    assert(Op.isReg());
    auto AllowedRegs = Op.getRegisterAliasing().sourceBits();
    assert(AllowedRegs.size() == ForbiddenRegs.size());
    for (auto I : ForbiddenRegs.set_bits())
      AllowedRegs.reset(I);
    if (!AllowedRegs.any())
      return make_error<Failure>(
          Twine("no available registers:\ncandidates:\n")
              .concat(debugString(State.getRegInfo(),
                                  Op.getRegisterAliasing().sourceBits()))
              .concat("\nforbidden:\n")
              .concat(debugString(State.getRegInfo(), ForbiddenRegs)));
    AssignedValue = MCOperand::createReg(randomBit(AllowedRegs));
    break;
  }
  default:
    break;
  }
  return Error::success();
}
Error randomizeUnsetVariables(const LLVMState &State,
                              const BitVector &ForbiddenRegs,
                              InstructionTemplate &IT) {
  for (const Variable &Var : IT.getInstr().Variables) {
    MCOperand &AssignedValue = IT.getValueFor(Var);
    if (!AssignedValue.isValid())
      if (auto Err = randomizeMCOperand(State, IT.getInstr(), Var,
                                        AssignedValue, ForbiddenRegs))
        return Err;
  }
  return Error::success();
}
} // namespace exegesis
} // namespace llvm
 |