| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 
 | //===- FuncToLLVM.cpp - Func to LLVM dialect conversion -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert MLIR Func and builtin dialects
// into the LLVM IR dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVMPass.h"
#include "mlir/Analysis/DataLayoutAnalysis.h"
#include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h"
#include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/LLVMCommon/VectorPattern.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributeInterfaces.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormatVariadic.h"
#include <algorithm>
#include <functional>
namespace mlir {
#define GEN_PASS_DEF_CONVERTFUNCTOLLVM
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
#define PASS_NAME "convert-func-to-llvm"
static constexpr StringRef varargsAttrName = "func.varargs";
static constexpr StringRef linkageAttrName = "llvm.linkage";
/// Only retain those attributes that are not constructed by
/// `LLVMFuncOp::build`. If `filterArgAttrs` is set, also filter out argument
/// attributes.
static void filterFuncAttributes(func::FuncOp func, bool filterArgAndResAttrs,
                                 SmallVectorImpl<NamedAttribute> &result) {
  for (const NamedAttribute &attr : func->getAttrs()) {
    if (attr.getName() == SymbolTable::getSymbolAttrName() ||
        attr.getName() == func.getFunctionTypeAttrName() ||
        attr.getName() == linkageAttrName ||
        attr.getName() == varargsAttrName ||
        attr.getName() == LLVM::LLVMDialect::getReadnoneAttrName() ||
        (filterArgAndResAttrs &&
         (attr.getName() == func.getArgAttrsAttrName() ||
          attr.getName() == func.getResAttrsAttrName())))
      continue;
    result.push_back(attr);
  }
}
/// Helper function for wrapping all attributes into a single DictionaryAttr
static auto wrapAsStructAttrs(OpBuilder &b, ArrayAttr attrs) {
  return DictionaryAttr::get(
      b.getContext(),
      b.getNamedAttr(LLVM::LLVMDialect::getStructAttrsAttrName(), attrs));
}
/// Combines all result attributes into a single DictionaryAttr
/// and prepends to argument attrs.
/// This is intended to be used to format the attributes for a C wrapper
/// function when the result(s) is converted to the first function argument
/// (in the multiple return case, all returns get wrapped into a single
/// argument). The total number of argument attributes should be equal to
/// (number of function arguments) + 1.
static void
prependResAttrsToArgAttrs(OpBuilder &builder,
                          SmallVectorImpl<NamedAttribute> &attributes,
                          func::FuncOp func) {
  size_t numArguments = func.getNumArguments();
  auto allAttrs = SmallVector<Attribute>(
      numArguments + 1, DictionaryAttr::get(builder.getContext()));
  NamedAttribute *argAttrs = nullptr;
  for (auto *it = attributes.begin(); it != attributes.end();) {
    if (it->getName() == func.getArgAttrsAttrName()) {
      auto arrayAttrs = it->getValue().cast<ArrayAttr>();
      assert(arrayAttrs.size() == numArguments &&
             "Number of arg attrs and args should match");
      std::copy(arrayAttrs.begin(), arrayAttrs.end(), allAttrs.begin() + 1);
      argAttrs = it;
    } else if (it->getName() == func.getResAttrsAttrName()) {
      auto arrayAttrs = it->getValue().cast<ArrayAttr>();
      assert(!arrayAttrs.empty() && "expected array to be non-empty");
      allAttrs[0] = (arrayAttrs.size() == 1)
                        ? arrayAttrs[0]
                        : wrapAsStructAttrs(builder, arrayAttrs);
      it = attributes.erase(it);
      continue;
    }
    it++;
  }
  auto newArgAttrs = builder.getNamedAttr(func.getArgAttrsAttrName(),
                                          builder.getArrayAttr(allAttrs));
  if (!argAttrs) {
    attributes.emplace_back(newArgAttrs);
    return;
  }
  *argAttrs = newArgAttrs;
}
/// Creates an auxiliary function with pointer-to-memref-descriptor-struct
/// arguments instead of unpacked arguments. This function can be called from C
/// by passing a pointer to a C struct corresponding to a memref descriptor.
/// Similarly, returned memrefs are passed via pointers to a C struct that is
/// passed as additional argument.
/// Internally, the auxiliary function unpacks the descriptor into individual
/// components and forwards them to `newFuncOp` and forwards the results to
/// the extra arguments.
static void wrapForExternalCallers(OpBuilder &rewriter, Location loc,
                                   LLVMTypeConverter &typeConverter,
                                   func::FuncOp funcOp,
                                   LLVM::LLVMFuncOp newFuncOp) {
  auto type = funcOp.getFunctionType();
  SmallVector<NamedAttribute, 4> attributes;
  filterFuncAttributes(funcOp, /*filterArgAndResAttrs=*/false, attributes);
  auto [wrapperFuncType, resultIsNowArg] =
      typeConverter.convertFunctionTypeCWrapper(type);
  if (resultIsNowArg)
    prependResAttrsToArgAttrs(rewriter, attributes, funcOp);
  auto wrapperFuncOp = rewriter.create<LLVM::LLVMFuncOp>(
      loc, llvm::formatv("_mlir_ciface_{0}", funcOp.getName()).str(),
      wrapperFuncType, LLVM::Linkage::External, /*dsoLocal*/ false,
      /*cconv*/ LLVM::CConv::C, attributes);
  OpBuilder::InsertionGuard guard(rewriter);
  rewriter.setInsertionPointToStart(wrapperFuncOp.addEntryBlock());
  SmallVector<Value, 8> args;
  size_t argOffset = resultIsNowArg ? 1 : 0;
  for (auto &en : llvm::enumerate(type.getInputs())) {
    Value arg = wrapperFuncOp.getArgument(en.index() + argOffset);
    if (auto memrefType = en.value().dyn_cast<MemRefType>()) {
      Value loaded = rewriter.create<LLVM::LoadOp>(loc, arg);
      MemRefDescriptor::unpack(rewriter, loc, loaded, memrefType, args);
      continue;
    }
    if (en.value().isa<UnrankedMemRefType>()) {
      Value loaded = rewriter.create<LLVM::LoadOp>(loc, arg);
      UnrankedMemRefDescriptor::unpack(rewriter, loc, loaded, args);
      continue;
    }
    args.push_back(arg);
  }
  auto call = rewriter.create<LLVM::CallOp>(loc, newFuncOp, args);
  if (resultIsNowArg) {
    rewriter.create<LLVM::StoreOp>(loc, call.getResult(),
                                   wrapperFuncOp.getArgument(0));
    rewriter.create<LLVM::ReturnOp>(loc, ValueRange{});
  } else {
    rewriter.create<LLVM::ReturnOp>(loc, call.getResults());
  }
}
/// Creates an auxiliary function with pointer-to-memref-descriptor-struct
/// arguments instead of unpacked arguments. Creates a body for the (external)
/// `newFuncOp` that allocates a memref descriptor on stack, packs the
/// individual arguments into this descriptor and passes a pointer to it into
/// the auxiliary function. If the result of the function cannot be directly
/// returned, we write it to a special first argument that provides a pointer
/// to a corresponding struct. This auxiliary external function is now
/// compatible with functions defined in C using pointers to C structs
/// corresponding to a memref descriptor.
static void wrapExternalFunction(OpBuilder &builder, Location loc,
                                 LLVMTypeConverter &typeConverter,
                                 func::FuncOp funcOp,
                                 LLVM::LLVMFuncOp newFuncOp) {
  OpBuilder::InsertionGuard guard(builder);
  auto [wrapperType, resultIsNowArg] =
      typeConverter.convertFunctionTypeCWrapper(funcOp.getFunctionType());
  // This conversion can only fail if it could not convert one of the argument
  // types. But since it has been applied to a non-wrapper function before, it
  // should have failed earlier and not reach this point at all.
  assert(wrapperType && "unexpected type conversion failure");
  SmallVector<NamedAttribute, 4> attributes;
  filterFuncAttributes(funcOp, /*filterArgAndResAttrs=*/false, attributes);
  if (resultIsNowArg)
    prependResAttrsToArgAttrs(builder, attributes, funcOp);
  // Create the auxiliary function.
  auto wrapperFunc = builder.create<LLVM::LLVMFuncOp>(
      loc, llvm::formatv("_mlir_ciface_{0}", funcOp.getName()).str(),
      wrapperType, LLVM::Linkage::External, /*dsoLocal*/ false,
      /*cconv*/ LLVM::CConv::C, attributes);
  builder.setInsertionPointToStart(newFuncOp.addEntryBlock());
  // Get a ValueRange containing arguments.
  FunctionType type = funcOp.getFunctionType();
  SmallVector<Value, 8> args;
  args.reserve(type.getNumInputs());
  ValueRange wrapperArgsRange(newFuncOp.getArguments());
  if (resultIsNowArg) {
    // Allocate the struct on the stack and pass the pointer.
    Type resultType =
        wrapperType.cast<LLVM::LLVMFunctionType>().getParamType(0);
    Value one = builder.create<LLVM::ConstantOp>(
        loc, typeConverter.convertType(builder.getIndexType()),
        builder.getIntegerAttr(builder.getIndexType(), 1));
    Value result = builder.create<LLVM::AllocaOp>(loc, resultType, one);
    args.push_back(result);
  }
  // Iterate over the inputs of the original function and pack values into
  // memref descriptors if the original type is a memref.
  for (auto &en : llvm::enumerate(type.getInputs())) {
    Value arg;
    int numToDrop = 1;
    auto memRefType = en.value().dyn_cast<MemRefType>();
    auto unrankedMemRefType = en.value().dyn_cast<UnrankedMemRefType>();
    if (memRefType || unrankedMemRefType) {
      numToDrop = memRefType
                      ? MemRefDescriptor::getNumUnpackedValues(memRefType)
                      : UnrankedMemRefDescriptor::getNumUnpackedValues();
      Value packed =
          memRefType
              ? MemRefDescriptor::pack(builder, loc, typeConverter, memRefType,
                                       wrapperArgsRange.take_front(numToDrop))
              : UnrankedMemRefDescriptor::pack(
                    builder, loc, typeConverter, unrankedMemRefType,
                    wrapperArgsRange.take_front(numToDrop));
      auto ptrTy = LLVM::LLVMPointerType::get(packed.getType());
      Value one = builder.create<LLVM::ConstantOp>(
          loc, typeConverter.convertType(builder.getIndexType()),
          builder.getIntegerAttr(builder.getIndexType(), 1));
      Value allocated =
          builder.create<LLVM::AllocaOp>(loc, ptrTy, one, /*alignment=*/0);
      builder.create<LLVM::StoreOp>(loc, packed, allocated);
      arg = allocated;
    } else {
      arg = wrapperArgsRange[0];
    }
    args.push_back(arg);
    wrapperArgsRange = wrapperArgsRange.drop_front(numToDrop);
  }
  assert(wrapperArgsRange.empty() && "did not map some of the arguments");
  auto call = builder.create<LLVM::CallOp>(loc, wrapperFunc, args);
  if (resultIsNowArg) {
    Value result = builder.create<LLVM::LoadOp>(loc, args.front());
    builder.create<LLVM::ReturnOp>(loc, result);
  } else {
    builder.create<LLVM::ReturnOp>(loc, call.getResults());
  }
}
namespace {
struct FuncOpConversionBase : public ConvertOpToLLVMPattern<func::FuncOp> {
protected:
  using ConvertOpToLLVMPattern<func::FuncOp>::ConvertOpToLLVMPattern;
  // Convert input FuncOp to LLVMFuncOp by using the LLVMTypeConverter provided
  // to this legalization pattern.
  LLVM::LLVMFuncOp
  convertFuncOpToLLVMFuncOp(func::FuncOp funcOp,
                            ConversionPatternRewriter &rewriter) const {
    // Convert the original function arguments. They are converted using the
    // LLVMTypeConverter provided to this legalization pattern.
    auto varargsAttr = funcOp->getAttrOfType<BoolAttr>(varargsAttrName);
    TypeConverter::SignatureConversion result(funcOp.getNumArguments());
    auto llvmType = getTypeConverter()->convertFunctionSignature(
        funcOp.getFunctionType(), varargsAttr && varargsAttr.getValue(),
        result);
    if (!llvmType)
      return nullptr;
    // Propagate argument/result attributes to all converted arguments/result
    // obtained after converting a given original argument/result.
    SmallVector<NamedAttribute, 4> attributes;
    filterFuncAttributes(funcOp, /*filterArgAndResAttrs=*/true, attributes);
    if (ArrayAttr resAttrDicts = funcOp.getAllResultAttrs()) {
      assert(!resAttrDicts.empty() && "expected array to be non-empty");
      auto newResAttrDicts =
          (funcOp.getNumResults() == 1)
              ? resAttrDicts
              : rewriter.getArrayAttr(
                    {wrapAsStructAttrs(rewriter, resAttrDicts)});
      attributes.push_back(
          rewriter.getNamedAttr(funcOp.getResAttrsAttrName(), newResAttrDicts));
    }
    if (ArrayAttr argAttrDicts = funcOp.getAllArgAttrs()) {
      SmallVector<Attribute, 4> newArgAttrs(
          llvmType.cast<LLVM::LLVMFunctionType>().getNumParams());
      for (unsigned i = 0, e = funcOp.getNumArguments(); i < e; ++i) {
        // Some LLVM IR attribute have a type attached to them. During FuncOp ->
        // LLVMFuncOp conversion these types may have changed. Account for that
        // change by converting attributes' types as well.
        SmallVector<NamedAttribute, 4> convertedAttrs;
        auto attrsDict = argAttrDicts[i].cast<DictionaryAttr>();
        convertedAttrs.reserve(attrsDict.size());
        for (const NamedAttribute &attr : attrsDict) {
          const auto convert = [&](const NamedAttribute &attr) {
            return TypeAttr::get(getTypeConverter()->convertType(
                attr.getValue().cast<TypeAttr>().getValue()));
          };
          if (attr.getName().getValue() ==
              LLVM::LLVMDialect::getByValAttrName()) {
            convertedAttrs.push_back(rewriter.getNamedAttr(
                LLVM::LLVMDialect::getByValAttrName(), convert(attr)));
          } else if (attr.getName().getValue() ==
                     LLVM::LLVMDialect::getByRefAttrName()) {
            convertedAttrs.push_back(rewriter.getNamedAttr(
                LLVM::LLVMDialect::getByRefAttrName(), convert(attr)));
          } else if (attr.getName().getValue() ==
                     LLVM::LLVMDialect::getStructRetAttrName()) {
            convertedAttrs.push_back(rewriter.getNamedAttr(
                LLVM::LLVMDialect::getStructRetAttrName(), convert(attr)));
          } else if (attr.getName().getValue() ==
                     LLVM::LLVMDialect::getInAllocaAttrName()) {
            convertedAttrs.push_back(rewriter.getNamedAttr(
                LLVM::LLVMDialect::getInAllocaAttrName(), convert(attr)));
          } else {
            convertedAttrs.push_back(attr);
          }
        }
        auto mapping = result.getInputMapping(i);
        assert(mapping && "unexpected deletion of function argument");
        // Only attach the new argument attributes if there is a one-to-one
        // mapping from old to new types. Otherwise, attributes might be
        // attached to types that they do not support.
        if (mapping->size == 1) {
          newArgAttrs[mapping->inputNo] =
              DictionaryAttr::get(rewriter.getContext(), convertedAttrs);
          continue;
        }
        // TODO: Implement custom handling for types that expand to multiple
        // function arguments.
        for (size_t j = 0; j < mapping->size; ++j)
          newArgAttrs[mapping->inputNo + j] =
              DictionaryAttr::get(rewriter.getContext(), {});
      }
      attributes.push_back(rewriter.getNamedAttr(
          funcOp.getArgAttrsAttrName(), rewriter.getArrayAttr(newArgAttrs)));
    }
    // Create an LLVM function, use external linkage by default until MLIR
    // functions have linkage.
    LLVM::Linkage linkage = LLVM::Linkage::External;
    if (funcOp->hasAttr(linkageAttrName)) {
      auto attr =
          funcOp->getAttr(linkageAttrName).dyn_cast<mlir::LLVM::LinkageAttr>();
      if (!attr) {
        funcOp->emitError() << "Contains " << linkageAttrName
                            << " attribute not of type LLVM::LinkageAttr";
        return nullptr;
      }
      linkage = attr.getLinkage();
    }
    // Create a memory effect attribute corresponding to readnone.
    StringRef readnoneAttrName = LLVM::LLVMDialect::getReadnoneAttrName();
    LLVM::MemoryEffectsAttr memoryAttr = {};
    if (funcOp->hasAttr(readnoneAttrName)) {
      auto attr = funcOp->getAttrOfType<UnitAttr>(readnoneAttrName);
      if (!attr) {
        funcOp->emitError() << "Contains " << readnoneAttrName
                            << " attribute not of type UnitAttr";
        return nullptr;
      }
      memoryAttr = LLVM::MemoryEffectsAttr::get(rewriter.getContext(),
                                                {LLVM::ModRefInfo::NoModRef,
                                                 LLVM::ModRefInfo::NoModRef,
                                                 LLVM::ModRefInfo::NoModRef});
    }
    auto newFuncOp = rewriter.create<LLVM::LLVMFuncOp>(
        funcOp.getLoc(), funcOp.getName(), llvmType, linkage,
        /*dsoLocal*/ false, /*cconv*/ LLVM::CConv::C, attributes);
    // If the memory attribute was created, add it to the function.
    if (memoryAttr)
      newFuncOp.setMemoryAttr(memoryAttr);
    rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
                                newFuncOp.end());
    if (failed(rewriter.convertRegionTypes(&newFuncOp.getBody(), *typeConverter,
                                           &result)))
      return nullptr;
    return newFuncOp;
  }
};
/// FuncOp legalization pattern that converts MemRef arguments to pointers to
/// MemRef descriptors (LLVM struct data types) containing all the MemRef type
/// information.
struct FuncOpConversion : public FuncOpConversionBase {
  FuncOpConversion(LLVMTypeConverter &converter)
      : FuncOpConversionBase(converter) {}
  LogicalResult
  matchAndRewrite(func::FuncOp funcOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto newFuncOp = convertFuncOpToLLVMFuncOp(funcOp, rewriter);
    if (!newFuncOp)
      return failure();
    if (funcOp->getAttrOfType<UnitAttr>(
            LLVM::LLVMDialect::getEmitCWrapperAttrName())) {
      if (newFuncOp.isVarArg())
        return funcOp->emitError("C interface for variadic functions is not "
                                 "supported yet.");
      if (newFuncOp.isExternal())
        wrapExternalFunction(rewriter, funcOp.getLoc(), *getTypeConverter(),
                             funcOp, newFuncOp);
      else
        wrapForExternalCallers(rewriter, funcOp.getLoc(), *getTypeConverter(),
                               funcOp, newFuncOp);
    }
    rewriter.eraseOp(funcOp);
    return success();
  }
};
/// FuncOp legalization pattern that converts MemRef arguments to bare pointers
/// to the MemRef element type. This will impact the calling convention and ABI.
struct BarePtrFuncOpConversion : public FuncOpConversionBase {
  using FuncOpConversionBase::FuncOpConversionBase;
  LogicalResult
  matchAndRewrite(func::FuncOp funcOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // TODO: bare ptr conversion could be handled by argument materialization
    // and most of the code below would go away. But to do this, we would need a
    // way to distinguish between FuncOp and other regions in the
    // addArgumentMaterialization hook.
    // Store the type of memref-typed arguments before the conversion so that we
    // can promote them to MemRef descriptor at the beginning of the function.
    SmallVector<Type, 8> oldArgTypes =
        llvm::to_vector<8>(funcOp.getFunctionType().getInputs());
    auto newFuncOp = convertFuncOpToLLVMFuncOp(funcOp, rewriter);
    if (!newFuncOp)
      return failure();
    if (newFuncOp.getBody().empty()) {
      rewriter.eraseOp(funcOp);
      return success();
    }
    // Promote bare pointers from memref arguments to memref descriptors at the
    // beginning of the function so that all the memrefs in the function have a
    // uniform representation.
    Block *entryBlock = &newFuncOp.getBody().front();
    auto blockArgs = entryBlock->getArguments();
    assert(blockArgs.size() == oldArgTypes.size() &&
           "The number of arguments and types doesn't match");
    OpBuilder::InsertionGuard guard(rewriter);
    rewriter.setInsertionPointToStart(entryBlock);
    for (auto it : llvm::zip(blockArgs, oldArgTypes)) {
      BlockArgument arg = std::get<0>(it);
      Type argTy = std::get<1>(it);
      // Unranked memrefs are not supported in the bare pointer calling
      // convention. We should have bailed out before in the presence of
      // unranked memrefs.
      assert(!argTy.isa<UnrankedMemRefType>() &&
             "Unranked memref is not supported");
      auto memrefTy = argTy.dyn_cast<MemRefType>();
      if (!memrefTy)
        continue;
      // Replace barePtr with a placeholder (undef), promote barePtr to a ranked
      // or unranked memref descriptor and replace placeholder with the last
      // instruction of the memref descriptor.
      // TODO: The placeholder is needed to avoid replacing barePtr uses in the
      // MemRef descriptor instructions. We may want to have a utility in the
      // rewriter to properly handle this use case.
      Location loc = funcOp.getLoc();
      auto placeholder = rewriter.create<LLVM::UndefOp>(
          loc, getTypeConverter()->convertType(memrefTy));
      rewriter.replaceUsesOfBlockArgument(arg, placeholder);
      Value desc = MemRefDescriptor::fromStaticShape(
          rewriter, loc, *getTypeConverter(), memrefTy, arg);
      rewriter.replaceOp(placeholder, {desc});
    }
    rewriter.eraseOp(funcOp);
    return success();
  }
};
struct ConstantOpLowering : public ConvertOpToLLVMPattern<func::ConstantOp> {
  using ConvertOpToLLVMPattern<func::ConstantOp>::ConvertOpToLLVMPattern;
  LogicalResult
  matchAndRewrite(func::ConstantOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto type = typeConverter->convertType(op.getResult().getType());
    if (!type || !LLVM::isCompatibleType(type))
      return rewriter.notifyMatchFailure(op, "failed to convert result type");
    auto newOp =
        rewriter.create<LLVM::AddressOfOp>(op.getLoc(), type, op.getValue());
    for (const NamedAttribute &attr : op->getAttrs()) {
      if (attr.getName().strref() == "value")
        continue;
      newOp->setAttr(attr.getName(), attr.getValue());
    }
    rewriter.replaceOp(op, newOp->getResults());
    return success();
  }
};
// A CallOp automatically promotes MemRefType to a sequence of alloca/store and
// passes the pointer to the MemRef across function boundaries.
template <typename CallOpType>
struct CallOpInterfaceLowering : public ConvertOpToLLVMPattern<CallOpType> {
  using ConvertOpToLLVMPattern<CallOpType>::ConvertOpToLLVMPattern;
  using Super = CallOpInterfaceLowering<CallOpType>;
  using Base = ConvertOpToLLVMPattern<CallOpType>;
  LogicalResult
  matchAndRewrite(CallOpType callOp, typename CallOpType::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Pack the result types into a struct.
    Type packedResult = nullptr;
    unsigned numResults = callOp.getNumResults();
    auto resultTypes = llvm::to_vector<4>(callOp.getResultTypes());
    if (numResults != 0) {
      if (!(packedResult =
                this->getTypeConverter()->packFunctionResults(resultTypes)))
        return failure();
    }
    auto promoted = this->getTypeConverter()->promoteOperands(
        callOp.getLoc(), /*opOperands=*/callOp->getOperands(),
        adaptor.getOperands(), rewriter);
    auto newOp = rewriter.create<LLVM::CallOp>(
        callOp.getLoc(), packedResult ? TypeRange(packedResult) : TypeRange(),
        promoted, callOp->getAttrs());
    SmallVector<Value, 4> results;
    if (numResults < 2) {
      // If < 2 results, packing did not do anything and we can just return.
      results.append(newOp.result_begin(), newOp.result_end());
    } else {
      // Otherwise, it had been converted to an operation producing a structure.
      // Extract individual results from the structure and return them as list.
      results.reserve(numResults);
      for (unsigned i = 0; i < numResults; ++i) {
        results.push_back(rewriter.create<LLVM::ExtractValueOp>(
            callOp.getLoc(), newOp->getResult(0), i));
      }
    }
    if (this->getTypeConverter()->getOptions().useBarePtrCallConv) {
      // For the bare-ptr calling convention, promote memref results to
      // descriptors.
      assert(results.size() == resultTypes.size() &&
             "The number of arguments and types doesn't match");
      this->getTypeConverter()->promoteBarePtrsToDescriptors(
          rewriter, callOp.getLoc(), resultTypes, results);
    } else if (failed(this->copyUnrankedDescriptors(rewriter, callOp.getLoc(),
                                                    resultTypes, results,
                                                    /*toDynamic=*/false))) {
      return failure();
    }
    rewriter.replaceOp(callOp, results);
    return success();
  }
};
struct CallOpLowering : public CallOpInterfaceLowering<func::CallOp> {
  using Super::Super;
};
struct CallIndirectOpLowering
    : public CallOpInterfaceLowering<func::CallIndirectOp> {
  using Super::Super;
};
struct UnrealizedConversionCastOpLowering
    : public ConvertOpToLLVMPattern<UnrealizedConversionCastOp> {
  using ConvertOpToLLVMPattern<
      UnrealizedConversionCastOp>::ConvertOpToLLVMPattern;
  LogicalResult
  matchAndRewrite(UnrealizedConversionCastOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    SmallVector<Type> convertedTypes;
    if (succeeded(typeConverter->convertTypes(op.getOutputs().getTypes(),
                                              convertedTypes)) &&
        convertedTypes == adaptor.getInputs().getTypes()) {
      rewriter.replaceOp(op, adaptor.getInputs());
      return success();
    }
    convertedTypes.clear();
    if (succeeded(typeConverter->convertTypes(adaptor.getInputs().getTypes(),
                                              convertedTypes)) &&
        convertedTypes == op.getOutputs().getType()) {
      rewriter.replaceOp(op, adaptor.getInputs());
      return success();
    }
    return failure();
  }
};
// Special lowering pattern for `ReturnOps`.  Unlike all other operations,
// `ReturnOp` interacts with the function signature and must have as many
// operands as the function has return values.  Because in LLVM IR, functions
// can only return 0 or 1 value, we pack multiple values into a structure type.
// Emit `UndefOp` followed by `InsertValueOp`s to create such structure if
// necessary before returning it
struct ReturnOpLowering : public ConvertOpToLLVMPattern<func::ReturnOp> {
  using ConvertOpToLLVMPattern<func::ReturnOp>::ConvertOpToLLVMPattern;
  LogicalResult
  matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    unsigned numArguments = op.getNumOperands();
    SmallVector<Value, 4> updatedOperands;
    if (getTypeConverter()->getOptions().useBarePtrCallConv) {
      // For the bare-ptr calling convention, extract the aligned pointer to
      // be returned from the memref descriptor.
      for (auto it : llvm::zip(op->getOperands(), adaptor.getOperands())) {
        Type oldTy = std::get<0>(it).getType();
        Value newOperand = std::get<1>(it);
        if (oldTy.isa<MemRefType>() && getTypeConverter()->canConvertToBarePtr(
                                           oldTy.cast<BaseMemRefType>())) {
          MemRefDescriptor memrefDesc(newOperand);
          newOperand = memrefDesc.alignedPtr(rewriter, loc);
        } else if (oldTy.isa<UnrankedMemRefType>()) {
          // Unranked memref is not supported in the bare pointer calling
          // convention.
          return failure();
        }
        updatedOperands.push_back(newOperand);
      }
    } else {
      updatedOperands = llvm::to_vector<4>(adaptor.getOperands());
      (void)copyUnrankedDescriptors(rewriter, loc, op.getOperands().getTypes(),
                                    updatedOperands,
                                    /*toDynamic=*/true);
    }
    // If ReturnOp has 0 or 1 operand, create it and return immediately.
    if (numArguments <= 1) {
      rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(
          op, TypeRange(), updatedOperands, op->getAttrs());
      return success();
    }
    // Otherwise, we need to pack the arguments into an LLVM struct type before
    // returning.
    auto packedType =
        getTypeConverter()->packFunctionResults(op.getOperandTypes());
    Value packed = rewriter.create<LLVM::UndefOp>(loc, packedType);
    for (auto &it : llvm::enumerate(updatedOperands)) {
      packed = rewriter.create<LLVM::InsertValueOp>(loc, packed, it.value(),
                                                    it.index());
    }
    rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, TypeRange(), packed,
                                                op->getAttrs());
    return success();
  }
};
} // namespace
void mlir::populateFuncToLLVMFuncOpConversionPattern(
    LLVMTypeConverter &converter, RewritePatternSet &patterns) {
  if (converter.getOptions().useBarePtrCallConv)
    patterns.add<BarePtrFuncOpConversion>(converter);
  else
    patterns.add<FuncOpConversion>(converter);
}
void mlir::populateFuncToLLVMConversionPatterns(LLVMTypeConverter &converter,
                                                RewritePatternSet &patterns) {
  populateFuncToLLVMFuncOpConversionPattern(converter, patterns);
  // clang-format off
  patterns.add<
      CallIndirectOpLowering,
      CallOpLowering,
      ConstantOpLowering,
      ReturnOpLowering>(converter);
  // clang-format on
}
namespace {
/// A pass converting Func operations into the LLVM IR dialect.
struct ConvertFuncToLLVMPass
    : public impl::ConvertFuncToLLVMBase<ConvertFuncToLLVMPass> {
  ConvertFuncToLLVMPass() = default;
  ConvertFuncToLLVMPass(bool useBarePtrCallConv, unsigned indexBitwidth,
                        bool useAlignedAlloc,
                        const llvm::DataLayout &dataLayout) {
    this->useBarePtrCallConv = useBarePtrCallConv;
    this->indexBitwidth = indexBitwidth;
    this->dataLayout = dataLayout.getStringRepresentation();
  }
  /// Run the dialect converter on the module.
  void runOnOperation() override {
    if (failed(LLVM::LLVMDialect::verifyDataLayoutString(
            this->dataLayout, [this](const Twine &message) {
              getOperation().emitError() << message.str();
            }))) {
      signalPassFailure();
      return;
    }
    ModuleOp m = getOperation();
    const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>();
    LowerToLLVMOptions options(&getContext(),
                               dataLayoutAnalysis.getAtOrAbove(m));
    options.useBarePtrCallConv = useBarePtrCallConv;
    if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
      options.overrideIndexBitwidth(indexBitwidth);
    options.dataLayout = llvm::DataLayout(this->dataLayout);
    LLVMTypeConverter typeConverter(&getContext(), options,
                                    &dataLayoutAnalysis);
    RewritePatternSet patterns(&getContext());
    populateFuncToLLVMConversionPatterns(typeConverter, patterns);
    // TODO: Remove these in favor of their dedicated conversion passes.
    arith::populateArithToLLVMConversionPatterns(typeConverter, patterns);
    cf::populateControlFlowToLLVMConversionPatterns(typeConverter, patterns);
    LLVMConversionTarget target(getContext());
    if (failed(applyPartialConversion(m, target, std::move(patterns))))
      signalPassFailure();
    m->setAttr(LLVM::LLVMDialect::getDataLayoutAttrName(),
               StringAttr::get(m.getContext(), this->dataLayout));
  }
};
} // namespace
std::unique_ptr<OperationPass<ModuleOp>> mlir::createConvertFuncToLLVMPass() {
  return std::make_unique<ConvertFuncToLLVMPass>();
}
std::unique_ptr<OperationPass<ModuleOp>>
mlir::createConvertFuncToLLVMPass(const LowerToLLVMOptions &options) {
  auto allocLowering = options.allocLowering;
  // There is no way to provide additional patterns for pass, so
  // AllocLowering::None will always fail.
  assert(allocLowering != LowerToLLVMOptions::AllocLowering::None &&
         "ConvertFuncToLLVMPass doesn't support AllocLowering::None");
  bool useAlignedAlloc =
      (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc);
  return std::make_unique<ConvertFuncToLLVMPass>(
      options.useBarePtrCallConv, options.getIndexBitwidth(), useAlignedAlloc,
      options.dataLayout);
}
 |