1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
|
//===- ConvertLaunchFuncToGpuRuntimeCalls.cpp - MLIR GPU lowering passes --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert gpu.launch_func op into a sequence of
// GPU runtime calls. As most of GPU runtimes does not have a stable published
// ABI, this pass uses a slim runtime layer that builds on top of the public
// API from GPU runtime headers.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
#include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h"
#include "mlir/Conversion/AsyncToLLVM/AsyncToLLVM.h"
#include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVMPass.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Dialect/Async/IR/Async.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/Transforms/Passes.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
namespace mlir {
#define GEN_PASS_DEF_GPUTOLLVMCONVERSIONPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
static constexpr const char *kGpuBinaryStorageSuffix = "_gpubin_cst";
namespace {
class GpuToLLVMConversionPass
: public impl::GpuToLLVMConversionPassBase<GpuToLLVMConversionPass> {
public:
GpuToLLVMConversionPass() = default;
GpuToLLVMConversionPass(bool kernelBarePtrCallConv)
: GpuToLLVMConversionPass() {
if (this->kernelBarePtrCallConv.getNumOccurrences() == 0)
this->kernelBarePtrCallConv = kernelBarePtrCallConv;
}
GpuToLLVMConversionPass(const GpuToLLVMConversionPass &other)
: GpuToLLVMConversionPassBase(other) {}
// Run the dialect converter on the module.
void runOnOperation() override;
private:
Option<std::string> gpuBinaryAnnotation{
*this, "gpu-binary-annotation",
llvm::cl::desc("Annotation attribute string for GPU binary"),
llvm::cl::init(gpu::getDefaultGpuBinaryAnnotation())};
Option<bool> kernelBarePtrCallConv{
*this, "use-bare-pointers-for-kernels",
llvm::cl::desc("Use bare pointers to pass memref arguments to kernels. "
"The kernel must use the same setting for this option."),
llvm::cl::init(false)};
};
struct FunctionCallBuilder {
FunctionCallBuilder(StringRef functionName, Type returnType,
ArrayRef<Type> argumentTypes)
: functionName(functionName),
functionType(LLVM::LLVMFunctionType::get(returnType, argumentTypes)) {}
LLVM::CallOp create(Location loc, OpBuilder &builder,
ArrayRef<Value> arguments) const;
StringRef functionName;
LLVM::LLVMFunctionType functionType;
};
template <typename OpTy>
class ConvertOpToGpuRuntimeCallPattern : public ConvertOpToLLVMPattern<OpTy> {
public:
explicit ConvertOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToLLVMPattern<OpTy>(typeConverter) {}
protected:
Value getNumElements(ConversionPatternRewriter &rewriter, Location loc,
MemRefType type, MemRefDescriptor desc) const {
return type.hasStaticShape()
? ConvertToLLVMPattern::createIndexConstant(
rewriter, loc, type.getNumElements())
// For identity maps (verified by caller), the number of
// elements is stride[0] * size[0].
: rewriter.create<LLVM::MulOp>(loc,
desc.stride(rewriter, loc, 0),
desc.size(rewriter, loc, 0));
}
MLIRContext *context = &this->getTypeConverter()->getContext();
Type llvmVoidType = LLVM::LLVMVoidType::get(context);
Type llvmPointerType =
LLVM::LLVMPointerType::get(IntegerType::get(context, 8));
Type llvmPointerPointerType = LLVM::LLVMPointerType::get(llvmPointerType);
Type llvmInt8Type = IntegerType::get(context, 8);
Type llvmInt32Type = IntegerType::get(context, 32);
Type llvmInt64Type = IntegerType::get(context, 64);
Type llvmIntPtrType = IntegerType::get(
context, this->getTypeConverter()->getPointerBitwidth(0));
FunctionCallBuilder moduleLoadCallBuilder = {
"mgpuModuleLoad",
llvmPointerType /* void *module */,
{llvmPointerType /* void *cubin */}};
FunctionCallBuilder moduleUnloadCallBuilder = {
"mgpuModuleUnload", llvmVoidType, {llvmPointerType /* void *module */}};
FunctionCallBuilder moduleGetFunctionCallBuilder = {
"mgpuModuleGetFunction",
llvmPointerType /* void *function */,
{
llvmPointerType, /* void *module */
llvmPointerType /* char *name */
}};
FunctionCallBuilder launchKernelCallBuilder = {
"mgpuLaunchKernel",
llvmVoidType,
{
llvmPointerType, /* void* f */
llvmIntPtrType, /* intptr_t gridXDim */
llvmIntPtrType, /* intptr_t gridyDim */
llvmIntPtrType, /* intptr_t gridZDim */
llvmIntPtrType, /* intptr_t blockXDim */
llvmIntPtrType, /* intptr_t blockYDim */
llvmIntPtrType, /* intptr_t blockZDim */
llvmInt32Type, /* unsigned int sharedMemBytes */
llvmPointerType, /* void *hstream */
llvmPointerPointerType, /* void **kernelParams */
llvmPointerPointerType /* void **extra */
}};
FunctionCallBuilder streamCreateCallBuilder = {
"mgpuStreamCreate", llvmPointerType /* void *stream */, {}};
FunctionCallBuilder streamDestroyCallBuilder = {
"mgpuStreamDestroy", llvmVoidType, {llvmPointerType /* void *stream */}};
FunctionCallBuilder streamSynchronizeCallBuilder = {
"mgpuStreamSynchronize",
llvmVoidType,
{llvmPointerType /* void *stream */}};
FunctionCallBuilder streamWaitEventCallBuilder = {
"mgpuStreamWaitEvent",
llvmVoidType,
{llvmPointerType /* void *stream */, llvmPointerType /* void *event */}};
FunctionCallBuilder eventCreateCallBuilder = {
"mgpuEventCreate", llvmPointerType /* void *event */, {}};
FunctionCallBuilder eventDestroyCallBuilder = {
"mgpuEventDestroy", llvmVoidType, {llvmPointerType /* void *event */}};
FunctionCallBuilder eventSynchronizeCallBuilder = {
"mgpuEventSynchronize",
llvmVoidType,
{llvmPointerType /* void *event */}};
FunctionCallBuilder eventRecordCallBuilder = {
"mgpuEventRecord",
llvmVoidType,
{llvmPointerType /* void *event */, llvmPointerType /* void *stream */}};
FunctionCallBuilder hostRegisterCallBuilder = {
"mgpuMemHostRegisterMemRef",
llvmVoidType,
{llvmIntPtrType /* intptr_t rank */,
llvmPointerType /* void *memrefDesc */,
llvmIntPtrType /* intptr_t elementSizeBytes */}};
FunctionCallBuilder allocCallBuilder = {
"mgpuMemAlloc",
llvmPointerType /* void * */,
{llvmIntPtrType /* intptr_t sizeBytes */,
llvmPointerType /* void *stream */}};
FunctionCallBuilder deallocCallBuilder = {
"mgpuMemFree",
llvmVoidType,
{llvmPointerType /* void *ptr */, llvmPointerType /* void *stream */}};
FunctionCallBuilder memcpyCallBuilder = {
"mgpuMemcpy",
llvmVoidType,
{llvmPointerType /* void *dst */, llvmPointerType /* void *src */,
llvmIntPtrType /* intptr_t sizeBytes */,
llvmPointerType /* void *stream */}};
FunctionCallBuilder memsetCallBuilder = {
"mgpuMemset32",
llvmVoidType,
{llvmPointerType /* void *dst */, llvmInt32Type /* unsigned int value */,
llvmIntPtrType /* intptr_t sizeBytes */,
llvmPointerType /* void *stream */}};
FunctionCallBuilder setDefaultDeviceCallBuilder = {
"mgpuSetDefaultDevice",
llvmVoidType,
{llvmInt32Type /* uint32_t devIndex */}};
};
/// A rewrite pattern to convert gpu.host_register operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertHostRegisterOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::HostRegisterOp> {
public:
ConvertHostRegisterOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::HostRegisterOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::HostRegisterOp hostRegisterOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.alloc operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertAllocOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::AllocOp> {
public:
ConvertAllocOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::AllocOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::AllocOp allocOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.dealloc operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertDeallocOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::DeallocOp> {
public:
ConvertDeallocOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::DeallocOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::DeallocOp deallocOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertAsyncYieldToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<async::YieldOp> {
public:
ConvertAsyncYieldToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<async::YieldOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(async::YieldOp yieldOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.wait operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertWaitOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp> {
public:
ConvertWaitOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::WaitOp waitOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.wait async operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertWaitAsyncOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp> {
public:
ConvertWaitAsyncOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::WaitOp waitOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite patter to convert gpu.launch_func operations into a sequence of
/// GPU runtime calls. Currently it supports CUDA and ROCm (HIP).
///
/// In essence, a gpu.launch_func operations gets compiled into the following
/// sequence of runtime calls:
///
/// * moduleLoad -- loads the module given the cubin / hsaco data
/// * moduleGetFunction -- gets a handle to the actual kernel function
/// * getStreamHelper -- initializes a new compute stream on GPU
/// * launchKernel -- launches the kernel on a stream
/// * streamSynchronize -- waits for operations on the stream to finish
///
/// Intermediate data structures are allocated on the stack.
class ConvertLaunchFuncOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::LaunchFuncOp> {
public:
ConvertLaunchFuncOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter,
StringRef gpuBinaryAnnotation,
bool kernelBarePtrCallConv)
: ConvertOpToGpuRuntimeCallPattern<gpu::LaunchFuncOp>(typeConverter),
gpuBinaryAnnotation(gpuBinaryAnnotation),
kernelBarePtrCallConv(kernelBarePtrCallConv) {}
private:
Value generateParamsArray(gpu::LaunchFuncOp launchOp, OpAdaptor adaptor,
OpBuilder &builder) const;
Value generateKernelNameConstant(StringRef moduleName, StringRef name,
Location loc, OpBuilder &builder) const;
LogicalResult
matchAndRewrite(gpu::LaunchFuncOp launchOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
llvm::SmallString<32> gpuBinaryAnnotation;
bool kernelBarePtrCallConv;
};
class EraseGpuModuleOpPattern : public OpRewritePattern<gpu::GPUModuleOp> {
using OpRewritePattern<gpu::GPUModuleOp>::OpRewritePattern;
LogicalResult matchAndRewrite(gpu::GPUModuleOp op,
PatternRewriter &rewriter) const override {
// GPU kernel modules are no longer necessary since we have a global
// constant with the CUBIN, or HSACO data.
rewriter.eraseOp(op);
return success();
}
};
/// A rewrite pattern to convert gpu.memcpy operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertMemcpyOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::MemcpyOp> {
public:
ConvertMemcpyOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::MemcpyOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::MemcpyOp memcpyOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.memset operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertMemsetOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::MemsetOp> {
public:
ConvertMemsetOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::MemsetOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::MemsetOp memsetOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.set_default_device to a GPU runtime call.
/// Currently supports CUDA and ROCm (HIP)
class ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::SetDefaultDeviceOp> {
public:
ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern(
LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::SetDefaultDeviceOp>(
typeConverter) {}
LogicalResult
matchAndRewrite(gpu::SetDefaultDeviceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
void GpuToLLVMConversionPass::runOnOperation() {
LLVMTypeConverter converter(&getContext());
RewritePatternSet patterns(&getContext());
LLVMConversionTarget target(getContext());
target.addIllegalDialect<gpu::GPUDialect>();
mlir::arith::populateArithToLLVMConversionPatterns(converter, patterns);
mlir::cf::populateControlFlowToLLVMConversionPatterns(converter, patterns);
populateVectorToLLVMConversionPatterns(converter, patterns);
populateMemRefToLLVMConversionPatterns(converter, patterns);
populateFuncToLLVMConversionPatterns(converter, patterns);
populateAsyncStructuralTypeConversionsAndLegality(converter, patterns,
target);
populateGpuToLLVMConversionPatterns(converter, patterns, gpuBinaryAnnotation,
kernelBarePtrCallConv);
if (failed(
applyPartialConversion(getOperation(), target, std::move(patterns))))
signalPassFailure();
}
LLVM::CallOp FunctionCallBuilder::create(Location loc, OpBuilder &builder,
ArrayRef<Value> arguments) const {
auto module = builder.getBlock()->getParent()->getParentOfType<ModuleOp>();
auto function = [&] {
if (auto function = module.lookupSymbol<LLVM::LLVMFuncOp>(functionName))
return function;
return OpBuilder::atBlockEnd(module.getBody())
.create<LLVM::LLVMFuncOp>(loc, functionName, functionType);
}();
return builder.create<LLVM::CallOp>(loc, function, arguments);
}
// Returns whether all operands are of LLVM type.
static LogicalResult areAllLLVMTypes(Operation *op, ValueRange operands,
ConversionPatternRewriter &rewriter) {
if (!llvm::all_of(operands, [](Value value) {
return LLVM::isCompatibleType(value.getType());
}))
return rewriter.notifyMatchFailure(
op, "Cannot convert if operands aren't of LLVM type.");
return success();
}
static LogicalResult
isAsyncWithOneDependency(ConversionPatternRewriter &rewriter,
gpu::AsyncOpInterface op) {
if (op.getAsyncDependencies().size() != 1)
return rewriter.notifyMatchFailure(
op, "Can only convert with exactly one async dependency.");
if (!op.getAsyncToken())
return rewriter.notifyMatchFailure(op, "Can convert only async version.");
return success();
}
LogicalResult ConvertHostRegisterOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::HostRegisterOp hostRegisterOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto *op = hostRegisterOp.getOperation();
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)))
return failure();
Location loc = op->getLoc();
auto memRefType = hostRegisterOp.getValue().getType();
auto elementType = memRefType.cast<UnrankedMemRefType>().getElementType();
auto elementSize = getSizeInBytes(loc, elementType, rewriter);
auto arguments = getTypeConverter()->promoteOperands(
loc, op->getOperands(), adaptor.getOperands(), rewriter);
arguments.push_back(elementSize);
hostRegisterCallBuilder.create(loc, rewriter, arguments);
rewriter.eraseOp(op);
return success();
}
LogicalResult ConvertAllocOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::AllocOp allocOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (adaptor.getHostShared())
return rewriter.notifyMatchFailure(
allocOp, "host_shared allocation is not supported");
MemRefType memRefType = allocOp.getType();
if (failed(areAllLLVMTypes(allocOp, adaptor.getOperands(), rewriter)) ||
!isConvertibleAndHasIdentityMaps(memRefType) ||
failed(isAsyncWithOneDependency(rewriter, allocOp)))
return failure();
auto loc = allocOp.getLoc();
// Get shape of the memref as values: static sizes are constant
// values and dynamic sizes are passed to 'alloc' as operands.
SmallVector<Value, 4> shape;
SmallVector<Value, 4> strides;
Value sizeBytes;
getMemRefDescriptorSizes(loc, memRefType, adaptor.getDynamicSizes(), rewriter,
shape, strides, sizeBytes);
// Allocate the underlying buffer and store a pointer to it in the MemRef
// descriptor.
Type elementPtrType = this->getElementPtrType(memRefType);
auto stream = adaptor.getAsyncDependencies().front();
Value allocatedPtr =
allocCallBuilder.create(loc, rewriter, {sizeBytes, stream}).getResult();
allocatedPtr =
rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, allocatedPtr);
// No alignment.
Value alignedPtr = allocatedPtr;
// Create the MemRef descriptor.
auto memRefDescriptor = this->createMemRefDescriptor(
loc, memRefType, allocatedPtr, alignedPtr, shape, strides, rewriter);
rewriter.replaceOp(allocOp, {memRefDescriptor, stream});
return success();
}
LogicalResult ConvertDeallocOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::DeallocOp deallocOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(deallocOp, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, deallocOp)))
return failure();
Location loc = deallocOp.getLoc();
Value pointer =
MemRefDescriptor(adaptor.getMemref()).allocatedPtr(rewriter, loc);
auto casted = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pointer);
Value stream = adaptor.getAsyncDependencies().front();
deallocCallBuilder.create(loc, rewriter, {casted, stream});
rewriter.replaceOp(deallocOp, {stream});
return success();
}
static bool isGpuAsyncTokenType(Value value) {
return value.getType().isa<gpu::AsyncTokenType>();
}
// Converts !gpu.async.token operands of `async.yield` to runtime calls. The
// !gpu.async.token are lowered to stream within the async.execute region, but
// are passed as events between them. For each !gpu.async.token operand, we
// create an event and record it on the stream.
LogicalResult ConvertAsyncYieldToGpuRuntimeCallPattern::matchAndRewrite(
async::YieldOp yieldOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (llvm::none_of(yieldOp.getOperands(), isGpuAsyncTokenType))
return rewriter.notifyMatchFailure(yieldOp, "no gpu async token operand");
Location loc = yieldOp.getLoc();
SmallVector<Value, 4> newOperands(adaptor.getOperands());
llvm::SmallDenseSet<Value> streams;
for (auto &operand : yieldOp->getOpOperands()) {
if (!isGpuAsyncTokenType(operand.get()))
continue;
auto idx = operand.getOperandNumber();
auto stream = adaptor.getOperands()[idx];
auto event = eventCreateCallBuilder.create(loc, rewriter, {}).getResult();
eventRecordCallBuilder.create(loc, rewriter, {event, stream});
newOperands[idx] = event;
streams.insert(stream);
}
for (auto stream : streams)
streamDestroyCallBuilder.create(loc, rewriter, {stream});
rewriter.updateRootInPlace(yieldOp,
[&] { yieldOp->setOperands(newOperands); });
return success();
}
// Returns whether `value` is the result of an LLVM::CallOp to `functionName`.
static bool isDefinedByCallTo(Value value, StringRef functionName) {
assert(value.getType().isa<LLVM::LLVMPointerType>());
if (auto defOp = value.getDefiningOp<LLVM::CallOp>())
return defOp.getCallee()->equals(functionName);
return false;
}
// Converts `gpu.wait` to runtime calls. The converted op synchronizes the host
// with the stream/event operands. The operands are destroyed. That is, it
// assumes that it is not used afterwards or elsewhere. Otherwise we will get a
// runtime error. Eventually, we should guarantee this property.
LogicalResult ConvertWaitOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::WaitOp waitOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (waitOp.getAsyncToken())
return rewriter.notifyMatchFailure(waitOp, "Cannot convert async op.");
Location loc = waitOp.getLoc();
for (auto operand : adaptor.getOperands()) {
if (isDefinedByCallTo(operand, streamCreateCallBuilder.functionName)) {
// The converted operand's definition created a stream.
streamSynchronizeCallBuilder.create(loc, rewriter, {operand});
streamDestroyCallBuilder.create(loc, rewriter, {operand});
} else {
// Otherwise the converted operand is an event. This assumes that we use
// events in control flow code as well.
eventSynchronizeCallBuilder.create(loc, rewriter, {operand});
eventDestroyCallBuilder.create(loc, rewriter, {operand});
}
}
rewriter.eraseOp(waitOp);
return success();
}
// Converts `gpu.wait async` to runtime calls. The converted op creates a new
// stream that is synchronized with stream/event operands. The operands are
// destroyed. That is, it assumes that it is not used afterwards or elsewhere.
// Otherwise we will get a runtime error. Eventually, we should guarantee this
// property.
LogicalResult ConvertWaitAsyncOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::WaitOp waitOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (!waitOp.getAsyncToken())
return rewriter.notifyMatchFailure(waitOp, "Can only convert async op.");
Location loc = waitOp.getLoc();
auto insertionPoint = rewriter.saveInsertionPoint();
SmallVector<Value, 1> events;
for (auto pair :
llvm::zip(waitOp.getAsyncDependencies(), adaptor.getOperands())) {
auto operand = std::get<1>(pair);
if (isDefinedByCallTo(operand, streamCreateCallBuilder.functionName)) {
// The converted operand's definition created a stream. Insert an event
// into the stream just after the last use of the original token operand.
auto *defOp = std::get<0>(pair).getDefiningOp();
rewriter.setInsertionPointAfter(defOp);
auto event = eventCreateCallBuilder.create(loc, rewriter, {}).getResult();
eventRecordCallBuilder.create(loc, rewriter, {event, operand});
events.push_back(event);
} else {
// Otherwise the converted operand is an event. This assumes that we use
// events in control flow code as well.
events.push_back(operand);
}
}
rewriter.restoreInsertionPoint(insertionPoint);
auto stream = streamCreateCallBuilder.create(loc, rewriter, {}).getResult();
for (auto event : events)
streamWaitEventCallBuilder.create(loc, rewriter, {stream, event});
for (auto event : events)
eventDestroyCallBuilder.create(loc, rewriter, {event});
rewriter.replaceOp(waitOp, {stream});
return success();
}
// Creates a struct containing all kernel parameters on the stack and returns
// an array of type-erased pointers to the fields of the struct. The array can
// then be passed to the CUDA / ROCm (HIP) kernel launch calls.
// The generated code is essentially as follows:
//
// %struct = alloca(sizeof(struct { Parameters... }))
// %array = alloca(NumParameters * sizeof(void *))
// for (i : [0, NumParameters))
// %fieldPtr = llvm.getelementptr %struct[0, i]
// llvm.store parameters[i], %fieldPtr
// %elementPtr = llvm.getelementptr %array[i]
// llvm.store %fieldPtr, %elementPtr
// return %array
Value ConvertLaunchFuncOpToGpuRuntimeCallPattern::generateParamsArray(
gpu::LaunchFuncOp launchOp, OpAdaptor adaptor, OpBuilder &builder) const {
auto loc = launchOp.getLoc();
auto numKernelOperands = launchOp.getNumKernelOperands();
SmallVector<Value, 4> arguments;
if (kernelBarePtrCallConv) {
// Hack the bare pointer value on just for the argument promotion
LLVMTypeConverter *converter = getTypeConverter();
LowerToLLVMOptions options = converter->getOptions();
LowerToLLVMOptions overrideToMatchKernelOpts = options;
overrideToMatchKernelOpts.useBarePtrCallConv = true;
converter->dangerousSetOptions(overrideToMatchKernelOpts);
arguments = converter->promoteOperands(
loc, launchOp.getOperands().take_back(numKernelOperands),
adaptor.getOperands().take_back(numKernelOperands), builder);
converter->dangerousSetOptions(options);
} else {
arguments = getTypeConverter()->promoteOperands(
loc, launchOp.getOperands().take_back(numKernelOperands),
adaptor.getOperands().take_back(numKernelOperands), builder);
}
auto numArguments = arguments.size();
SmallVector<Type, 4> argumentTypes;
argumentTypes.reserve(numArguments);
for (auto argument : arguments)
argumentTypes.push_back(argument.getType());
auto structType = LLVM::LLVMStructType::getNewIdentified(context, StringRef(),
argumentTypes);
auto one = builder.create<LLVM::ConstantOp>(loc, llvmInt32Type, 1);
auto structPtr = builder.create<LLVM::AllocaOp>(
loc, LLVM::LLVMPointerType::get(structType), one, /*alignment=*/0);
auto arraySize =
builder.create<LLVM::ConstantOp>(loc, llvmInt32Type, numArguments);
auto arrayPtr = builder.create<LLVM::AllocaOp>(loc, llvmPointerPointerType,
arraySize, /*alignment=*/0);
for (const auto &en : llvm::enumerate(arguments)) {
auto fieldPtr = builder.create<LLVM::GEPOp>(
loc, LLVM::LLVMPointerType::get(argumentTypes[en.index()]), structPtr,
ArrayRef<LLVM::GEPArg>{0, en.index()});
builder.create<LLVM::StoreOp>(loc, en.value(), fieldPtr);
auto elementPtr =
builder.create<LLVM::GEPOp>(loc, llvmPointerPointerType, arrayPtr,
ArrayRef<LLVM::GEPArg>{en.index()});
auto casted =
builder.create<LLVM::BitcastOp>(loc, llvmPointerType, fieldPtr);
builder.create<LLVM::StoreOp>(loc, casted, elementPtr);
}
return arrayPtr;
}
// Generates an LLVM IR dialect global that contains the name of the given
// kernel function as a C string, and returns a pointer to its beginning.
// The code is essentially:
//
// llvm.global constant @kernel_name("function_name\00")
// func(...) {
// %0 = llvm.addressof @kernel_name
// %1 = llvm.constant (0 : index)
// %2 = llvm.getelementptr %0[%1, %1] : !llvm<"i8*">
// }
Value ConvertLaunchFuncOpToGpuRuntimeCallPattern::generateKernelNameConstant(
StringRef moduleName, StringRef name, Location loc,
OpBuilder &builder) const {
// Make sure the trailing zero is included in the constant.
std::vector<char> kernelName(name.begin(), name.end());
kernelName.push_back('\0');
std::string globalName =
std::string(llvm::formatv("{0}_{1}_kernel_name", moduleName, name));
return LLVM::createGlobalString(
loc, builder, globalName, StringRef(kernelName.data(), kernelName.size()),
LLVM::Linkage::Internal);
}
// Emits LLVM IR to launch a kernel function. Expects the module that contains
// the compiled kernel function as a cubin in the 'nvvm.cubin' attribute, or a
// hsaco in the 'rocdl.hsaco' attribute of the kernel function in the IR.
//
// %0 = call %binarygetter
// %1 = call %moduleLoad(%0)
// %2 = <see generateKernelNameConstant>
// %3 = call %moduleGetFunction(%1, %2)
// %4 = call %streamCreate()
// %5 = <see generateParamsArray>
// call %launchKernel(%3, <launchOp operands 0..5>, 0, %4, %5, nullptr)
// call %streamSynchronize(%4)
// call %streamDestroy(%4)
// call %moduleUnload(%1)
//
// If the op is async, the stream corresponds to the (single) async dependency
// as well as the async token the op produces.
LogicalResult ConvertLaunchFuncOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::LaunchFuncOp launchOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(launchOp, adaptor.getOperands(), rewriter)))
return failure();
if (launchOp.getAsyncDependencies().size() > 1)
return rewriter.notifyMatchFailure(
launchOp, "Cannot convert with more than one async dependency.");
// Fail when the synchronous version of the op has async dependencies. The
// lowering destroys the stream, and we do not want to check that there is no
// use of the stream after this op.
if (!launchOp.getAsyncToken() && !launchOp.getAsyncDependencies().empty())
return rewriter.notifyMatchFailure(
launchOp, "Cannot convert non-async op with async dependencies.");
Location loc = launchOp.getLoc();
// Create an LLVM global with CUBIN extracted from the kernel annotation and
// obtain a pointer to the first byte in it.
auto kernelModule = SymbolTable::lookupNearestSymbolFrom<gpu::GPUModuleOp>(
launchOp, launchOp.getKernelModuleName());
assert(kernelModule && "expected a kernel module");
auto binaryAttr =
kernelModule->getAttrOfType<StringAttr>(gpuBinaryAnnotation);
if (!binaryAttr) {
kernelModule.emitOpError()
<< "missing " << gpuBinaryAnnotation << " attribute";
return failure();
}
SmallString<128> nameBuffer(kernelModule.getName());
nameBuffer.append(kGpuBinaryStorageSuffix);
Value data =
LLVM::createGlobalString(loc, rewriter, nameBuffer.str(),
binaryAttr.getValue(), LLVM::Linkage::Internal);
auto module = moduleLoadCallBuilder.create(loc, rewriter, data);
// Get the function from the module. The name corresponds to the name of
// the kernel function.
auto kernelName = generateKernelNameConstant(
launchOp.getKernelModuleName().getValue(),
launchOp.getKernelName().getValue(), loc, rewriter);
auto function = moduleGetFunctionCallBuilder.create(
loc, rewriter, {module.getResult(), kernelName});
Value zero = rewriter.create<LLVM::ConstantOp>(loc, llvmInt32Type, 0);
Value stream =
adaptor.getAsyncDependencies().empty()
? streamCreateCallBuilder.create(loc, rewriter, {}).getResult()
: adaptor.getAsyncDependencies().front();
// Create array of pointers to kernel arguments.
auto kernelParams = generateParamsArray(launchOp, adaptor, rewriter);
auto nullpointer = rewriter.create<LLVM::NullOp>(loc, llvmPointerPointerType);
Value dynamicSharedMemorySize = launchOp.getDynamicSharedMemorySize()
? launchOp.getDynamicSharedMemorySize()
: zero;
launchKernelCallBuilder.create(
loc, rewriter,
{function.getResult(), adaptor.getGridSizeX(), adaptor.getGridSizeY(),
adaptor.getGridSizeZ(), adaptor.getBlockSizeX(), adaptor.getBlockSizeY(),
adaptor.getBlockSizeZ(), dynamicSharedMemorySize, stream, kernelParams,
/*extra=*/nullpointer});
if (launchOp.getAsyncToken()) {
// Async launch: make dependent ops use the same stream.
rewriter.replaceOp(launchOp, {stream});
} else {
// Synchronize with host and destroy stream. This must be the stream created
// above (with no other uses) because we check that the synchronous version
// does not have any async dependencies.
streamSynchronizeCallBuilder.create(loc, rewriter, stream);
streamDestroyCallBuilder.create(loc, rewriter, stream);
rewriter.eraseOp(launchOp);
}
moduleUnloadCallBuilder.create(loc, rewriter, module.getResult());
return success();
}
LogicalResult ConvertMemcpyOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::MemcpyOp memcpyOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto memRefType = memcpyOp.getSrc().getType().cast<MemRefType>();
if (failed(areAllLLVMTypes(memcpyOp, adaptor.getOperands(), rewriter)) ||
!isConvertibleAndHasIdentityMaps(memRefType) ||
failed(isAsyncWithOneDependency(rewriter, memcpyOp)))
return failure();
auto loc = memcpyOp.getLoc();
MemRefDescriptor srcDesc(adaptor.getSrc());
Value numElements = getNumElements(rewriter, loc, memRefType, srcDesc);
Type elementPtrType = getElementPtrType(memRefType);
Value nullPtr = rewriter.create<LLVM::NullOp>(loc, elementPtrType);
Value gepPtr =
rewriter.create<LLVM::GEPOp>(loc, elementPtrType, nullPtr, numElements);
auto sizeBytes =
rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), gepPtr);
auto src = rewriter.create<LLVM::BitcastOp>(
loc, llvmPointerType, srcDesc.alignedPtr(rewriter, loc));
auto dst = rewriter.create<LLVM::BitcastOp>(
loc, llvmPointerType,
MemRefDescriptor(adaptor.getDst()).alignedPtr(rewriter, loc));
auto stream = adaptor.getAsyncDependencies().front();
memcpyCallBuilder.create(loc, rewriter, {dst, src, sizeBytes, stream});
rewriter.replaceOp(memcpyOp, {stream});
return success();
}
LogicalResult ConvertMemsetOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::MemsetOp memsetOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto memRefType = memsetOp.getDst().getType().cast<MemRefType>();
if (failed(areAllLLVMTypes(memsetOp, adaptor.getOperands(), rewriter)) ||
!isConvertibleAndHasIdentityMaps(memRefType) ||
failed(isAsyncWithOneDependency(rewriter, memsetOp)))
return failure();
auto loc = memsetOp.getLoc();
Type valueType = adaptor.getValue().getType();
if (!valueType.isIntOrFloat() || valueType.getIntOrFloatBitWidth() != 32) {
return rewriter.notifyMatchFailure(memsetOp,
"value must be a 32 bit scalar");
}
MemRefDescriptor dstDesc(adaptor.getDst());
Value numElements = getNumElements(rewriter, loc, memRefType, dstDesc);
auto value =
rewriter.create<LLVM::BitcastOp>(loc, llvmInt32Type, adaptor.getValue());
auto dst = rewriter.create<LLVM::BitcastOp>(
loc, llvmPointerType, dstDesc.alignedPtr(rewriter, loc));
auto stream = adaptor.getAsyncDependencies().front();
memsetCallBuilder.create(loc, rewriter, {dst, value, numElements, stream});
rewriter.replaceOp(memsetOp, {stream});
return success();
}
LogicalResult ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::SetDefaultDeviceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op.getLoc();
setDefaultDeviceCallBuilder.create(loc, rewriter, {adaptor.getDevIndex()});
rewriter.replaceOp(op, {});
return success();
}
std::unique_ptr<mlir::OperationPass<mlir::ModuleOp>>
mlir::createGpuToLLVMConversionPass(bool kernelBarePtrCallConv) {
return std::make_unique<GpuToLLVMConversionPass>(kernelBarePtrCallConv);
}
void mlir::populateGpuToLLVMConversionPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns,
StringRef gpuBinaryAnnotation,
bool kernelBarePtrCallConv) {
converter.addConversion(
[context = &converter.getContext()](gpu::AsyncTokenType type) -> Type {
return LLVM::LLVMPointerType::get(IntegerType::get(context, 8));
});
patterns.add<ConvertAllocOpToGpuRuntimeCallPattern,
ConvertDeallocOpToGpuRuntimeCallPattern,
ConvertHostRegisterOpToGpuRuntimeCallPattern,
ConvertMemcpyOpToGpuRuntimeCallPattern,
ConvertMemsetOpToGpuRuntimeCallPattern,
ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern,
ConvertWaitAsyncOpToGpuRuntimeCallPattern,
ConvertWaitOpToGpuRuntimeCallPattern,
ConvertAsyncYieldToGpuRuntimeCallPattern>(converter);
patterns.add<ConvertLaunchFuncOpToGpuRuntimeCallPattern>(
converter, gpuBinaryAnnotation, kernelBarePtrCallConv);
patterns.add<EraseGpuModuleOpPattern>(&converter.getContext());
}
|