| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 
 | //===- IndexToLLVM.cpp - Index to LLVM dialect conversion -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/IndexToLLVM/IndexToLLVM.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/Index/IR/IndexAttrs.h"
#include "mlir/Dialect/Index/IR/IndexDialect.h"
#include "mlir/Dialect/Index/IR/IndexOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Pass/Pass.h"
using namespace mlir;
using namespace index;
namespace {
//===----------------------------------------------------------------------===//
// ConvertIndexCeilDivS
//===----------------------------------------------------------------------===//
/// Convert `ceildivs(n, m)` into `x = m > 0 ? -1 : 1` and then
/// `n*m > 0 ? (n+x)/m + 1 : -(-n/m)`.
struct ConvertIndexCeilDivS : mlir::ConvertOpToLLVMPattern<CeilDivSOp> {
  using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
  LogicalResult
  matchAndRewrite(CeilDivSOp op, CeilDivSOpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    Value n = adaptor.getLhs();
    Value m = adaptor.getRhs();
    Value zero = rewriter.create<LLVM::ConstantOp>(loc, n.getType(), 0);
    Value posOne = rewriter.create<LLVM::ConstantOp>(loc, n.getType(), 1);
    Value negOne = rewriter.create<LLVM::ConstantOp>(loc, n.getType(), -1);
    // Compute `x`.
    Value mPos =
        rewriter.create<LLVM::ICmpOp>(loc, LLVM::ICmpPredicate::sgt, m, zero);
    Value x = rewriter.create<LLVM::SelectOp>(loc, mPos, negOne, posOne);
    // Compute the positive result.
    Value nPlusX = rewriter.create<LLVM::AddOp>(loc, n, x);
    Value nPlusXDivM = rewriter.create<LLVM::SDivOp>(loc, nPlusX, m);
    Value posRes = rewriter.create<LLVM::AddOp>(loc, nPlusXDivM, posOne);
    // Compute the negative result.
    Value negN = rewriter.create<LLVM::SubOp>(loc, zero, n);
    Value negNDivM = rewriter.create<LLVM::SDivOp>(loc, negN, m);
    Value negRes = rewriter.create<LLVM::SubOp>(loc, zero, negNDivM);
    // Pick the positive result if `n` and `m` have the same sign and `n` is
    // non-zero, i.e. `(n > 0) == (m > 0) && n != 0`.
    Value nPos =
        rewriter.create<LLVM::ICmpOp>(loc, LLVM::ICmpPredicate::sgt, n, zero);
    Value sameSign =
        rewriter.create<LLVM::ICmpOp>(loc, LLVM::ICmpPredicate::eq, nPos, mPos);
    Value nNonZero =
        rewriter.create<LLVM::ICmpOp>(loc, LLVM::ICmpPredicate::ne, n, zero);
    Value cmp = rewriter.create<LLVM::AndOp>(loc, sameSign, nNonZero);
    rewriter.replaceOpWithNewOp<LLVM::SelectOp>(op, cmp, posRes, negRes);
    return success();
  }
};
//===----------------------------------------------------------------------===//
// ConvertIndexCeilDivU
//===----------------------------------------------------------------------===//
/// Convert `ceildivu(n, m)` into `n == 0 ? 0 : (n-1)/m + 1`.
struct ConvertIndexCeilDivU : mlir::ConvertOpToLLVMPattern<CeilDivUOp> {
  using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
  LogicalResult
  matchAndRewrite(CeilDivUOp op, CeilDivUOpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    Value n = adaptor.getLhs();
    Value m = adaptor.getRhs();
    Value zero = rewriter.create<LLVM::ConstantOp>(loc, n.getType(), 0);
    Value one = rewriter.create<LLVM::ConstantOp>(loc, n.getType(), 1);
    // Compute the non-zero result.
    Value minusOne = rewriter.create<LLVM::SubOp>(loc, n, one);
    Value quotient = rewriter.create<LLVM::UDivOp>(loc, minusOne, m);
    Value plusOne = rewriter.create<LLVM::AddOp>(loc, quotient, one);
    // Pick the result.
    Value cmp =
        rewriter.create<LLVM::ICmpOp>(loc, LLVM::ICmpPredicate::eq, n, zero);
    rewriter.replaceOpWithNewOp<LLVM::SelectOp>(op, cmp, zero, plusOne);
    return success();
  }
};
//===----------------------------------------------------------------------===//
// ConvertIndexFloorDivS
//===----------------------------------------------------------------------===//
/// Convert `floordivs(n, m)` into `x = m < 0 ? 1 : -1` and then
/// `n*m < 0 ? -1 - (x-n)/m : n/m`.
struct ConvertIndexFloorDivS : mlir::ConvertOpToLLVMPattern<FloorDivSOp> {
  using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
  LogicalResult
  matchAndRewrite(FloorDivSOp op, FloorDivSOpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    Value n = adaptor.getLhs();
    Value m = adaptor.getRhs();
    Value zero = rewriter.create<LLVM::ConstantOp>(loc, n.getType(), 0);
    Value posOne = rewriter.create<LLVM::ConstantOp>(loc, n.getType(), 1);
    Value negOne = rewriter.create<LLVM::ConstantOp>(loc, n.getType(), -1);
    // Compute `x`.
    Value mNeg =
        rewriter.create<LLVM::ICmpOp>(loc, LLVM::ICmpPredicate::slt, m, zero);
    Value x = rewriter.create<LLVM::SelectOp>(loc, mNeg, posOne, negOne);
    // Compute the negative result.
    Value xMinusN = rewriter.create<LLVM::SubOp>(loc, x, n);
    Value xMinusNDivM = rewriter.create<LLVM::SDivOp>(loc, xMinusN, m);
    Value negRes = rewriter.create<LLVM::SubOp>(loc, negOne, xMinusNDivM);
    // Compute the positive result.
    Value posRes = rewriter.create<LLVM::SDivOp>(loc, n, m);
    // Pick the negative result if `n` and `m` have different signs and `n` is
    // non-zero, i.e. `(n < 0) != (m < 0) && n != 0`.
    Value nNeg =
        rewriter.create<LLVM::ICmpOp>(loc, LLVM::ICmpPredicate::slt, n, zero);
    Value diffSign =
        rewriter.create<LLVM::ICmpOp>(loc, LLVM::ICmpPredicate::ne, nNeg, mNeg);
    Value nNonZero =
        rewriter.create<LLVM::ICmpOp>(loc, LLVM::ICmpPredicate::ne, n, zero);
    Value cmp = rewriter.create<LLVM::AndOp>(loc, diffSign, nNonZero);
    rewriter.replaceOpWithNewOp<LLVM::SelectOp>(op, cmp, negRes, posRes);
    return success();
  }
};
//===----------------------------------------------------------------------===//
// CovnertIndexCast
//===----------------------------------------------------------------------===//
/// Convert a cast op. If the materialized index type is the same as the other
/// type, fold away the op. Otherwise, truncate or extend the op as appropriate.
/// Signed casts sign extend when the result bitwidth is larger. Unsigned casts
/// zero extend when the result bitwidth is larger.
template <typename CastOp, typename ExtOp>
struct ConvertIndexCast : public mlir::ConvertOpToLLVMPattern<CastOp> {
  using mlir::ConvertOpToLLVMPattern<CastOp>::ConvertOpToLLVMPattern;
  LogicalResult
  matchAndRewrite(CastOp op, typename CastOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Type in = adaptor.getInput().getType();
    Type out = this->getTypeConverter()->convertType(op.getType());
    if (in == out)
      rewriter.replaceOp(op, adaptor.getInput());
    else if (in.getIntOrFloatBitWidth() > out.getIntOrFloatBitWidth())
      rewriter.replaceOpWithNewOp<LLVM::TruncOp>(op, out, adaptor.getInput());
    else
      rewriter.replaceOpWithNewOp<ExtOp>(op, out, adaptor.getInput());
    return success();
  }
};
using ConvertIndexCastS = ConvertIndexCast<CastSOp, LLVM::SExtOp>;
using ConvertIndexCastU = ConvertIndexCast<CastUOp, LLVM::ZExtOp>;
//===----------------------------------------------------------------------===//
// ConvertIndexCmp
//===----------------------------------------------------------------------===//
/// Assert that the LLVM comparison enum lines up with index's enum.
static constexpr bool checkPredicates(LLVM::ICmpPredicate lhs,
                                      IndexCmpPredicate rhs) {
  return static_cast<int>(lhs) == static_cast<int>(rhs);
}
static_assert(
    LLVM::getMaxEnumValForICmpPredicate() ==
            getMaxEnumValForIndexCmpPredicate() &&
        checkPredicates(LLVM::ICmpPredicate::eq, IndexCmpPredicate::EQ) &&
        checkPredicates(LLVM::ICmpPredicate::ne, IndexCmpPredicate::NE) &&
        checkPredicates(LLVM::ICmpPredicate::sge, IndexCmpPredicate::SGE) &&
        checkPredicates(LLVM::ICmpPredicate::sgt, IndexCmpPredicate::SGT) &&
        checkPredicates(LLVM::ICmpPredicate::sle, IndexCmpPredicate::SLE) &&
        checkPredicates(LLVM::ICmpPredicate::slt, IndexCmpPredicate::SLT) &&
        checkPredicates(LLVM::ICmpPredicate::uge, IndexCmpPredicate::UGE) &&
        checkPredicates(LLVM::ICmpPredicate::ugt, IndexCmpPredicate::UGT) &&
        checkPredicates(LLVM::ICmpPredicate::ule, IndexCmpPredicate::ULE) &&
        checkPredicates(LLVM::ICmpPredicate::ult, IndexCmpPredicate::ULT),
    "LLVM ICmpPredicate mismatches IndexCmpPredicate");
struct ConvertIndexCmp : public mlir::ConvertOpToLLVMPattern<CmpOp> {
  using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
  LogicalResult
  matchAndRewrite(CmpOp op, CmpOpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // The LLVM enum has the same values as the index predicate enums.
    rewriter.replaceOpWithNewOp<LLVM::ICmpOp>(
        op, *LLVM::symbolizeICmpPredicate(static_cast<uint32_t>(op.getPred())),
        adaptor.getLhs(), adaptor.getRhs());
    return success();
  }
};
//===----------------------------------------------------------------------===//
// ConvertIndexSizeOf
//===----------------------------------------------------------------------===//
/// Lower `index.sizeof` to a constant with the value of the index bitwidth.
struct ConvertIndexSizeOf : public mlir::ConvertOpToLLVMPattern<SizeOfOp> {
  using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
  LogicalResult
  matchAndRewrite(SizeOfOp op, SizeOfOpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    rewriter.replaceOpWithNewOp<LLVM::ConstantOp>(
        op, getTypeConverter()->getIndexType(),
        getTypeConverter()->getIndexTypeBitwidth());
    return success();
  }
};
//===----------------------------------------------------------------------===//
// ConvertIndexConstant
//===----------------------------------------------------------------------===//
/// Convert an index constant. Truncate the value as appropriate.
struct ConvertIndexConstant : public mlir::ConvertOpToLLVMPattern<ConstantOp> {
  using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern;
  LogicalResult
  matchAndRewrite(ConstantOp op, ConstantOpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Type type = getTypeConverter()->getIndexType();
    APInt value = op.getValue().trunc(type.getIntOrFloatBitWidth());
    rewriter.replaceOpWithNewOp<LLVM::ConstantOp>(
        op, type, IntegerAttr::get(type, value));
    return success();
  }
};
//===----------------------------------------------------------------------===//
// Trivial Conversions
//===----------------------------------------------------------------------===//
using ConvertIndexAdd = mlir::OneToOneConvertToLLVMPattern<AddOp, LLVM::AddOp>;
using ConvertIndexSub = mlir::OneToOneConvertToLLVMPattern<SubOp, LLVM::SubOp>;
using ConvertIndexMul = mlir::OneToOneConvertToLLVMPattern<MulOp, LLVM::MulOp>;
using ConvertIndexDivS =
    mlir::OneToOneConvertToLLVMPattern<DivSOp, LLVM::SDivOp>;
using ConvertIndexDivU =
    mlir::OneToOneConvertToLLVMPattern<DivUOp, LLVM::UDivOp>;
using ConvertIndexRemS =
    mlir::OneToOneConvertToLLVMPattern<RemSOp, LLVM::SRemOp>;
using ConvertIndexRemU =
    mlir::OneToOneConvertToLLVMPattern<RemUOp, LLVM::URemOp>;
using ConvertIndexMaxS =
    mlir::OneToOneConvertToLLVMPattern<MaxSOp, LLVM::SMaxOp>;
using ConvertIndexMaxU =
    mlir::OneToOneConvertToLLVMPattern<MaxUOp, LLVM::UMaxOp>;
using ConvertIndexMinS =
    mlir::OneToOneConvertToLLVMPattern<MinSOp, LLVM::SMinOp>;
using ConvertIndexMinU =
    mlir::OneToOneConvertToLLVMPattern<MinUOp, LLVM::UMinOp>;
using ConvertIndexShl = mlir::OneToOneConvertToLLVMPattern<ShlOp, LLVM::ShlOp>;
using ConvertIndexShrS =
    mlir::OneToOneConvertToLLVMPattern<ShrSOp, LLVM::AShrOp>;
using ConvertIndexShrU =
    mlir::OneToOneConvertToLLVMPattern<ShrUOp, LLVM::LShrOp>;
using ConvertIndexAnd = mlir::OneToOneConvertToLLVMPattern<AndOp, LLVM::AndOp>;
using ConvertIndexOr = mlir::OneToOneConvertToLLVMPattern<OrOp, LLVM::OrOp>;
using ConvertIndexXor = mlir::OneToOneConvertToLLVMPattern<XOrOp, LLVM::XOrOp>;
using ConvertIndexBoolConstant =
    mlir::OneToOneConvertToLLVMPattern<BoolConstantOp, LLVM::ConstantOp>;
} // namespace
//===----------------------------------------------------------------------===//
// Pattern Population
//===----------------------------------------------------------------------===//
void index::populateIndexToLLVMConversionPatterns(
    LLVMTypeConverter &typeConverter, RewritePatternSet &patterns) {
  patterns.insert<
      // clang-format off
      ConvertIndexAdd,
      ConvertIndexSub,
      ConvertIndexMul,
      ConvertIndexDivS,
      ConvertIndexDivU,
      ConvertIndexRemS,
      ConvertIndexRemU,
      ConvertIndexMaxS,
      ConvertIndexMaxU,
      ConvertIndexMinS,
      ConvertIndexMinU,
      ConvertIndexShl,
      ConvertIndexShrS,
      ConvertIndexShrU,
      ConvertIndexAnd,
      ConvertIndexOr,
      ConvertIndexXor,
      ConvertIndexCeilDivS,
      ConvertIndexCeilDivU,
      ConvertIndexFloorDivS,
      ConvertIndexCastS,
      ConvertIndexCastU,
      ConvertIndexCmp,
      ConvertIndexSizeOf,
      ConvertIndexConstant,
      ConvertIndexBoolConstant
      // clang-format on
      >(typeConverter);
}
//===----------------------------------------------------------------------===//
// ODS-Generated Definitions
//===----------------------------------------------------------------------===//
namespace mlir {
#define GEN_PASS_DEF_CONVERTINDEXTOLLVMPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
//===----------------------------------------------------------------------===//
// Pass Definition
//===----------------------------------------------------------------------===//
namespace {
struct ConvertIndexToLLVMPass
    : public impl::ConvertIndexToLLVMPassBase<ConvertIndexToLLVMPass> {
  using Base::Base;
  void runOnOperation() override;
};
} // namespace
void ConvertIndexToLLVMPass::runOnOperation() {
  // Configure dialect conversion.
  ConversionTarget target(getContext());
  target.addIllegalDialect<IndexDialect>();
  target.addLegalDialect<LLVM::LLVMDialect>();
  // Set LLVM lowering options.
  LowerToLLVMOptions options(&getContext());
  if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
    options.overrideIndexBitwidth(indexBitwidth);
  LLVMTypeConverter typeConverter(&getContext(), options);
  // Populate patterns and run the conversion.
  RewritePatternSet patterns(&getContext());
  populateIndexToLLVMConversionPatterns(typeConverter, patterns);
  if (failed(
          applyPartialConversion(getOperation(), target, std::move(patterns))))
    return signalPassFailure();
}
 |