| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 
 | //===- TypeConverter.cpp - Convert builtin to LLVM dialect types ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
#include "MemRefDescriptor.h"
#include "mlir/Conversion/LLVMCommon/MemRefBuilder.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
using namespace mlir;
/// Create an LLVMTypeConverter using default LowerToLLVMOptions.
LLVMTypeConverter::LLVMTypeConverter(MLIRContext *ctx,
                                     const DataLayoutAnalysis *analysis)
    : LLVMTypeConverter(ctx, LowerToLLVMOptions(ctx), analysis) {}
/// Create an LLVMTypeConverter using custom LowerToLLVMOptions.
LLVMTypeConverter::LLVMTypeConverter(MLIRContext *ctx,
                                     const LowerToLLVMOptions &options,
                                     const DataLayoutAnalysis *analysis)
    : llvmDialect(ctx->getOrLoadDialect<LLVM::LLVMDialect>()), options(options),
      dataLayoutAnalysis(analysis) {
  assert(llvmDialect && "LLVM IR dialect is not registered");
  // Register conversions for the builtin types.
  addConversion([&](ComplexType type) { return convertComplexType(type); });
  addConversion([&](FloatType type) { return convertFloatType(type); });
  addConversion([&](FunctionType type) { return convertFunctionType(type); });
  addConversion([&](IndexType type) { return convertIndexType(type); });
  addConversion([&](IntegerType type) { return convertIntegerType(type); });
  addConversion([&](MemRefType type) { return convertMemRefType(type); });
  addConversion(
      [&](UnrankedMemRefType type) { return convertUnrankedMemRefType(type); });
  addConversion([&](VectorType type) { return convertVectorType(type); });
  // LLVM-compatible types are legal, so add a pass-through conversion. Do this
  // before the conversions below since conversions are attempted in reverse
  // order and those should take priority.
  addConversion([](Type type) {
    return LLVM::isCompatibleType(type) ? std::optional<Type>(type)
                                        : std::nullopt;
  });
  // LLVM container types may (recursively) contain other types that must be
  // converted even when the outer type is compatible.
  addConversion([&](LLVM::LLVMPointerType type) -> std::optional<Type> {
    if (type.isOpaque())
      return type;
    if (auto pointee = convertType(type.getElementType()))
      return LLVM::LLVMPointerType::get(pointee, type.getAddressSpace());
    return std::nullopt;
  });
  addConversion([&](LLVM::LLVMStructType type, SmallVectorImpl<Type> &results,
                    ArrayRef<Type> callStack) -> std::optional<LogicalResult> {
    // Fastpath for types that won't be converted by this callback anyway.
    if (LLVM::isCompatibleType(type)) {
      results.push_back(type);
      return success();
    }
    if (type.isIdentified()) {
      auto convertedType = LLVM::LLVMStructType::getIdentified(
          type.getContext(), ("_Converted_" + type.getName()).str());
      unsigned counter = 1;
      while (convertedType.isInitialized()) {
        assert(counter != UINT_MAX &&
               "about to overflow struct renaming counter in conversion");
        convertedType = LLVM::LLVMStructType::getIdentified(
            type.getContext(),
            ("_Converted_" + std::to_string(counter) + type.getName()).str());
      }
      if (llvm::count(callStack, type) > 1) {
        results.push_back(convertedType);
        return success();
      }
      SmallVector<Type> convertedElemTypes;
      convertedElemTypes.reserve(type.getBody().size());
      if (failed(convertTypes(type.getBody(), convertedElemTypes)))
        return std::nullopt;
      if (failed(convertedType.setBody(convertedElemTypes, type.isPacked())))
        return failure();
      results.push_back(convertedType);
      return success();
    }
    SmallVector<Type> convertedSubtypes;
    convertedSubtypes.reserve(type.getBody().size());
    if (failed(convertTypes(type.getBody(), convertedSubtypes)))
      return std::nullopt;
    results.push_back(LLVM::LLVMStructType::getLiteral(
        type.getContext(), convertedSubtypes, type.isPacked()));
    return success();
  });
  addConversion([&](LLVM::LLVMArrayType type) -> std::optional<Type> {
    if (auto element = convertType(type.getElementType()))
      return LLVM::LLVMArrayType::get(element, type.getNumElements());
    return std::nullopt;
  });
  addConversion([&](LLVM::LLVMFunctionType type) -> std::optional<Type> {
    Type convertedResType = convertType(type.getReturnType());
    if (!convertedResType)
      return std::nullopt;
    SmallVector<Type> convertedArgTypes;
    convertedArgTypes.reserve(type.getNumParams());
    if (failed(convertTypes(type.getParams(), convertedArgTypes)))
      return std::nullopt;
    return LLVM::LLVMFunctionType::get(convertedResType, convertedArgTypes,
                                       type.isVarArg());
  });
  // Materialization for memrefs creates descriptor structs from individual
  // values constituting them, when descriptors are used, i.e. more than one
  // value represents a memref.
  addArgumentMaterialization(
      [&](OpBuilder &builder, UnrankedMemRefType resultType, ValueRange inputs,
          Location loc) -> std::optional<Value> {
        if (inputs.size() == 1)
          return std::nullopt;
        return UnrankedMemRefDescriptor::pack(builder, loc, *this, resultType,
                                              inputs);
      });
  addArgumentMaterialization([&](OpBuilder &builder, MemRefType resultType,
                                 ValueRange inputs,
                                 Location loc) -> std::optional<Value> {
    // TODO: bare ptr conversion could be handled here but we would need a way
    // to distinguish between FuncOp and other regions.
    if (inputs.size() == 1)
      return std::nullopt;
    return MemRefDescriptor::pack(builder, loc, *this, resultType, inputs);
  });
  // Add generic source and target materializations to handle cases where
  // non-LLVM types persist after an LLVM conversion.
  addSourceMaterialization([&](OpBuilder &builder, Type resultType,
                               ValueRange inputs,
                               Location loc) -> std::optional<Value> {
    if (inputs.size() != 1)
      return std::nullopt;
    return builder.create<UnrealizedConversionCastOp>(loc, resultType, inputs)
        .getResult(0);
  });
  addTargetMaterialization([&](OpBuilder &builder, Type resultType,
                               ValueRange inputs,
                               Location loc) -> std::optional<Value> {
    if (inputs.size() != 1)
      return std::nullopt;
    return builder.create<UnrealizedConversionCastOp>(loc, resultType, inputs)
        .getResult(0);
  });
}
/// Returns the MLIR context.
MLIRContext &LLVMTypeConverter::getContext() {
  return *getDialect()->getContext();
}
Type LLVMTypeConverter::getIndexType() {
  return IntegerType::get(&getContext(), getIndexTypeBitwidth());
}
unsigned LLVMTypeConverter::getPointerBitwidth(unsigned addressSpace) {
  return options.dataLayout.getPointerSizeInBits(addressSpace);
}
Type LLVMTypeConverter::convertIndexType(IndexType type) {
  return getIndexType();
}
Type LLVMTypeConverter::convertIntegerType(IntegerType type) {
  return IntegerType::get(&getContext(), type.getWidth());
}
Type LLVMTypeConverter::convertFloatType(FloatType type) { return type; }
// Convert a `ComplexType` to an LLVM type. The result is a complex number
// struct with entries for the
//   1. real part and for the
//   2. imaginary part.
Type LLVMTypeConverter::convertComplexType(ComplexType type) {
  auto elementType = convertType(type.getElementType());
  return LLVM::LLVMStructType::getLiteral(&getContext(),
                                          {elementType, elementType});
}
// Except for signatures, MLIR function types are converted into LLVM
// pointer-to-function types.
Type LLVMTypeConverter::convertFunctionType(FunctionType type) {
  SignatureConversion conversion(type.getNumInputs());
  Type converted =
      convertFunctionSignature(type, /*isVariadic=*/false, conversion);
  if (!converted)
    return {};
  return LLVM::LLVMPointerType::get(converted);
}
// Function types are converted to LLVM Function types by recursively converting
// argument and result types.  If MLIR Function has zero results, the LLVM
// Function has one VoidType result.  If MLIR Function has more than one result,
// they are into an LLVM StructType in their order of appearance.
Type LLVMTypeConverter::convertFunctionSignature(
    FunctionType funcTy, bool isVariadic,
    LLVMTypeConverter::SignatureConversion &result) {
  // Select the argument converter depending on the calling convention.
  auto funcArgConverter = options.useBarePtrCallConv
                              ? barePtrFuncArgTypeConverter
                              : structFuncArgTypeConverter;
  // Convert argument types one by one and check for errors.
  for (auto &en : llvm::enumerate(funcTy.getInputs())) {
    Type type = en.value();
    SmallVector<Type, 8> converted;
    if (failed(funcArgConverter(*this, type, converted)))
      return {};
    result.addInputs(en.index(), converted);
  }
  // If function does not return anything, create the void result type,
  // if it returns on element, convert it, otherwise pack the result types into
  // a struct.
  Type resultType = funcTy.getNumResults() == 0
                        ? LLVM::LLVMVoidType::get(&getContext())
                        : packFunctionResults(funcTy.getResults());
  if (!resultType)
    return {};
  return LLVM::LLVMFunctionType::get(resultType, result.getConvertedTypes(),
                                     isVariadic);
}
/// Converts the function type to a C-compatible format, in particular using
/// pointers to memref descriptors for arguments.
std::pair<Type, bool>
LLVMTypeConverter::convertFunctionTypeCWrapper(FunctionType type) {
  SmallVector<Type, 4> inputs;
  bool resultIsNowArg = false;
  Type resultType = type.getNumResults() == 0
                        ? LLVM::LLVMVoidType::get(&getContext())
                        : packFunctionResults(type.getResults());
  if (!resultType)
    return {};
  if (auto structType = resultType.dyn_cast<LLVM::LLVMStructType>()) {
    // Struct types cannot be safely returned via C interface. Make this a
    // pointer argument, instead.
    inputs.push_back(LLVM::LLVMPointerType::get(structType));
    resultType = LLVM::LLVMVoidType::get(&getContext());
    resultIsNowArg = true;
  }
  for (Type t : type.getInputs()) {
    auto converted = convertType(t);
    if (!converted || !LLVM::isCompatibleType(converted))
      return {};
    if (t.isa<MemRefType, UnrankedMemRefType>())
      converted = LLVM::LLVMPointerType::get(converted);
    inputs.push_back(converted);
  }
  return {LLVM::LLVMFunctionType::get(resultType, inputs), resultIsNowArg};
}
/// Convert a memref type into a list of LLVM IR types that will form the
/// memref descriptor. The result contains the following types:
///  1. The pointer to the allocated data buffer, followed by
///  2. The pointer to the aligned data buffer, followed by
///  3. A lowered `index`-type integer containing the distance between the
///  beginning of the buffer and the first element to be accessed through the
///  view, followed by
///  4. An array containing as many `index`-type integers as the rank of the
///  MemRef: the array represents the size, in number of elements, of the memref
///  along the given dimension. For constant MemRef dimensions, the
///  corresponding size entry is a constant whose runtime value must match the
///  static value, followed by
///  5. A second array containing as many `index`-type integers as the rank of
///  the MemRef: the second array represents the "stride" (in tensor abstraction
///  sense), i.e. the number of consecutive elements of the underlying buffer.
///  TODO: add assertions for the static cases.
///
///  If `unpackAggregates` is set to true, the arrays described in (4) and (5)
///  are expanded into individual index-type elements.
///
///  template <typename Elem, typename Index, size_t Rank>
///  struct {
///    Elem *allocatedPtr;
///    Elem *alignedPtr;
///    Index offset;
///    Index sizes[Rank]; // omitted when rank == 0
///    Index strides[Rank]; // omitted when rank == 0
///  };
SmallVector<Type, 5>
LLVMTypeConverter::getMemRefDescriptorFields(MemRefType type,
                                             bool unpackAggregates) {
  if (!isStrided(type)) {
    emitError(
        UnknownLoc::get(type.getContext()),
        "conversion to strided form failed either due to non-strided layout "
        "maps (which should have been normalized away) or other reasons");
    return {};
  }
  Type elementType = convertType(type.getElementType());
  if (!elementType)
    return {};
  auto ptrTy =
      LLVM::LLVMPointerType::get(elementType, type.getMemorySpaceAsInt());
  auto indexTy = getIndexType();
  SmallVector<Type, 5> results = {ptrTy, ptrTy, indexTy};
  auto rank = type.getRank();
  if (rank == 0)
    return results;
  if (unpackAggregates)
    results.insert(results.end(), 2 * rank, indexTy);
  else
    results.insert(results.end(), 2, LLVM::LLVMArrayType::get(indexTy, rank));
  return results;
}
unsigned LLVMTypeConverter::getMemRefDescriptorSize(MemRefType type,
                                                    const DataLayout &layout) {
  // Compute the descriptor size given that of its components indicated above.
  unsigned space = type.getMemorySpaceAsInt();
  return 2 * llvm::divideCeil(getPointerBitwidth(space), 8) +
         (1 + 2 * type.getRank()) * layout.getTypeSize(getIndexType());
}
/// Converts MemRefType to LLVMType. A MemRefType is converted to a struct that
/// packs the descriptor fields as defined by `getMemRefDescriptorFields`.
Type LLVMTypeConverter::convertMemRefType(MemRefType type) {
  // When converting a MemRefType to a struct with descriptor fields, do not
  // unpack the `sizes` and `strides` arrays.
  SmallVector<Type, 5> types =
      getMemRefDescriptorFields(type, /*unpackAggregates=*/false);
  if (types.empty())
    return {};
  return LLVM::LLVMStructType::getLiteral(&getContext(), types);
}
/// Convert an unranked memref type into a list of non-aggregate LLVM IR types
/// that will form the unranked memref descriptor. In particular, the fields
/// for an unranked memref descriptor are:
/// 1. index-typed rank, the dynamic rank of this MemRef
/// 2. void* ptr, pointer to the static ranked MemRef descriptor. This will be
///    stack allocated (alloca) copy of a MemRef descriptor that got casted to
///    be unranked.
SmallVector<Type, 2> LLVMTypeConverter::getUnrankedMemRefDescriptorFields() {
  return {getIndexType(),
          LLVM::LLVMPointerType::get(IntegerType::get(&getContext(), 8))};
}
unsigned
LLVMTypeConverter::getUnrankedMemRefDescriptorSize(UnrankedMemRefType type,
                                                   const DataLayout &layout) {
  // Compute the descriptor size given that of its components indicated above.
  unsigned space = type.getMemorySpaceAsInt();
  return layout.getTypeSize(getIndexType()) +
         llvm::divideCeil(getPointerBitwidth(space), 8);
}
Type LLVMTypeConverter::convertUnrankedMemRefType(UnrankedMemRefType type) {
  if (!convertType(type.getElementType()))
    return {};
  return LLVM::LLVMStructType::getLiteral(&getContext(),
                                          getUnrankedMemRefDescriptorFields());
}
// Check if a memref type can be converted to a bare pointer.
bool LLVMTypeConverter::canConvertToBarePtr(BaseMemRefType type) {
  if (type.isa<UnrankedMemRefType>())
    // Unranked memref is not supported in the bare pointer calling convention.
    return false;
  // Check that the memref has static shape, strides and offset. Otherwise, it
  // cannot be lowered to a bare pointer.
  auto memrefTy = type.cast<MemRefType>();
  if (!memrefTy.hasStaticShape())
    return false;
  int64_t offset = 0;
  SmallVector<int64_t, 4> strides;
  if (failed(getStridesAndOffset(memrefTy, strides, offset)))
    return false;
  for (int64_t stride : strides)
    if (ShapedType::isDynamic(stride))
      return false;
  return !ShapedType::isDynamic(offset);
}
/// Convert a memref type to a bare pointer to the memref element type.
Type LLVMTypeConverter::convertMemRefToBarePtr(BaseMemRefType type) {
  if (!canConvertToBarePtr(type))
    return {};
  Type elementType = convertType(type.getElementType());
  if (!elementType)
    return {};
  return LLVM::LLVMPointerType::get(elementType, type.getMemorySpaceAsInt());
}
/// Convert an n-D vector type to an LLVM vector type:
///  * 0-D `vector<T>` are converted to vector<1xT>
///  * 1-D `vector<axT>` remains as is while,
///  * n>1 `vector<ax...xkxT>` convert via an (n-1)-D array type to
///    `!llvm.array<ax...array<jxvector<kxT>>>`.
Type LLVMTypeConverter::convertVectorType(VectorType type) {
  auto elementType = convertType(type.getElementType());
  if (!elementType)
    return {};
  if (type.getShape().empty())
    return VectorType::get({1}, elementType);
  Type vectorType = VectorType::get(type.getShape().back(), elementType,
                                    type.getNumScalableDims());
  assert(LLVM::isCompatibleVectorType(vectorType) &&
         "expected vector type compatible with the LLVM dialect");
  auto shape = type.getShape();
  for (int i = shape.size() - 2; i >= 0; --i)
    vectorType = LLVM::LLVMArrayType::get(vectorType, shape[i]);
  return vectorType;
}
/// Convert a type in the context of the default or bare pointer calling
/// convention. Calling convention sensitive types, such as MemRefType and
/// UnrankedMemRefType, are converted following the specific rules for the
/// calling convention. Calling convention independent types are converted
/// following the default LLVM type conversions.
Type LLVMTypeConverter::convertCallingConventionType(Type type) {
  if (options.useBarePtrCallConv)
    if (auto memrefTy = type.dyn_cast<BaseMemRefType>())
      return convertMemRefToBarePtr(memrefTy);
  return convertType(type);
}
/// Promote the bare pointers in 'values' that resulted from memrefs to
/// descriptors. 'stdTypes' holds they types of 'values' before the conversion
/// to the LLVM-IR dialect (i.e., MemRefType, or any other builtin type).
void LLVMTypeConverter::promoteBarePtrsToDescriptors(
    ConversionPatternRewriter &rewriter, Location loc, ArrayRef<Type> stdTypes,
    SmallVectorImpl<Value> &values) {
  assert(stdTypes.size() == values.size() &&
         "The number of types and values doesn't match");
  for (unsigned i = 0, end = values.size(); i < end; ++i)
    if (auto memrefTy = stdTypes[i].dyn_cast<MemRefType>())
      values[i] = MemRefDescriptor::fromStaticShape(rewriter, loc, *this,
                                                    memrefTy, values[i]);
}
/// Convert a non-empty list of types to be returned from a function into a
/// supported LLVM IR type.  In particular, if more than one value is returned,
/// create an LLVM IR structure type with elements that correspond to each of
/// the MLIR types converted with `convertType`.
Type LLVMTypeConverter::packFunctionResults(TypeRange types) {
  assert(!types.empty() && "expected non-empty list of type");
  if (types.size() == 1)
    return convertCallingConventionType(types.front());
  SmallVector<Type, 8> resultTypes;
  resultTypes.reserve(types.size());
  for (auto t : types) {
    auto converted = convertCallingConventionType(t);
    if (!converted || !LLVM::isCompatibleType(converted))
      return {};
    resultTypes.push_back(converted);
  }
  return LLVM::LLVMStructType::getLiteral(&getContext(), resultTypes);
}
Value LLVMTypeConverter::promoteOneMemRefDescriptor(Location loc, Value operand,
                                                    OpBuilder &builder) {
  // Alloca with proper alignment. We do not expect optimizations of this
  // alloca op and so we omit allocating at the entry block.
  auto ptrType = LLVM::LLVMPointerType::get(operand.getType());
  Value one = builder.create<LLVM::ConstantOp>(loc, builder.getI64Type(),
                                               builder.getIndexAttr(1));
  Value allocated =
      builder.create<LLVM::AllocaOp>(loc, ptrType, one, /*alignment=*/0);
  // Store into the alloca'ed descriptor.
  builder.create<LLVM::StoreOp>(loc, operand, allocated);
  return allocated;
}
SmallVector<Value, 4> LLVMTypeConverter::promoteOperands(Location loc,
                                                         ValueRange opOperands,
                                                         ValueRange operands,
                                                         OpBuilder &builder) {
  SmallVector<Value, 4> promotedOperands;
  promotedOperands.reserve(operands.size());
  for (auto it : llvm::zip(opOperands, operands)) {
    auto operand = std::get<0>(it);
    auto llvmOperand = std::get<1>(it);
    if (options.useBarePtrCallConv) {
      // For the bare-ptr calling convention, we only have to extract the
      // aligned pointer of a memref.
      if (auto memrefType = operand.getType().dyn_cast<MemRefType>()) {
        MemRefDescriptor desc(llvmOperand);
        llvmOperand = desc.alignedPtr(builder, loc);
      } else if (operand.getType().isa<UnrankedMemRefType>()) {
        llvm_unreachable("Unranked memrefs are not supported");
      }
    } else {
      if (operand.getType().isa<UnrankedMemRefType>()) {
        UnrankedMemRefDescriptor::unpack(builder, loc, llvmOperand,
                                         promotedOperands);
        continue;
      }
      if (auto memrefType = operand.getType().dyn_cast<MemRefType>()) {
        MemRefDescriptor::unpack(builder, loc, llvmOperand, memrefType,
                                 promotedOperands);
        continue;
      }
    }
    promotedOperands.push_back(llvmOperand);
  }
  return promotedOperands;
}
/// Callback to convert function argument types. It converts a MemRef function
/// argument to a list of non-aggregate types containing descriptor
/// information, and an UnrankedmemRef function argument to a list containing
/// the rank and a pointer to a descriptor struct.
LogicalResult mlir::structFuncArgTypeConverter(LLVMTypeConverter &converter,
                                               Type type,
                                               SmallVectorImpl<Type> &result) {
  if (auto memref = type.dyn_cast<MemRefType>()) {
    // In signatures, Memref descriptors are expanded into lists of
    // non-aggregate values.
    auto converted =
        converter.getMemRefDescriptorFields(memref, /*unpackAggregates=*/true);
    if (converted.empty())
      return failure();
    result.append(converted.begin(), converted.end());
    return success();
  }
  if (type.isa<UnrankedMemRefType>()) {
    auto converted = converter.getUnrankedMemRefDescriptorFields();
    if (converted.empty())
      return failure();
    result.append(converted.begin(), converted.end());
    return success();
  }
  auto converted = converter.convertType(type);
  if (!converted)
    return failure();
  result.push_back(converted);
  return success();
}
/// Callback to convert function argument types. It converts MemRef function
/// arguments to bare pointers to the MemRef element type.
LogicalResult mlir::barePtrFuncArgTypeConverter(LLVMTypeConverter &converter,
                                                Type type,
                                                SmallVectorImpl<Type> &result) {
  auto llvmTy = converter.convertCallingConventionType(type);
  if (!llvmTy)
    return failure();
  result.push_back(llvmTy);
  return success();
}
 |