1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
//===- AMDGPUDialect.cpp - MLIR AMDGPU dialect implementation --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AMDGPU dialect and its operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/AMDGPU/AMDGPUDialect.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "llvm/ADT/TypeSwitch.h"
#include <limits>
#include <optional>
using namespace mlir;
using namespace mlir::amdgpu;
#include "mlir/Dialect/AMDGPU/AMDGPUDialect.cpp.inc"
void AMDGPUDialect::initialize() {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/AMDGPU/AMDGPU.cpp.inc"
>();
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/AMDGPU/AMDGPUAttributes.cpp.inc"
>();
}
//===----------------------------------------------------------------------===//
// RawBuffer*Op
//===----------------------------------------------------------------------===//
template <typename T>
static LogicalResult verifyRawBufferOp(T &op) {
MemRefType bufferType = op.getMemref().getType().template cast<MemRefType>();
if (bufferType.getMemorySpaceAsInt() != 0)
return op.emitOpError(
"Buffer ops must operate on a memref in global memory");
if (!bufferType.hasRank())
return op.emitOpError(
"Cannot meaningfully buffer_store to an unranked memref");
if (static_cast<int64_t>(op.getIndices().size()) != bufferType.getRank())
return op.emitOpError("Expected " + Twine(bufferType.getRank()) +
" indices to memref");
return success();
}
LogicalResult RawBufferLoadOp::verify() { return verifyRawBufferOp(*this); }
LogicalResult RawBufferStoreOp::verify() { return verifyRawBufferOp(*this); }
LogicalResult RawBufferAtomicFaddOp::verify() {
return verifyRawBufferOp(*this);
}
static std::optional<uint32_t> getConstantUint32(Value v) {
APInt cst;
if (!v.getType().isInteger(32))
return std::nullopt;
if (matchPattern(v, m_ConstantInt(&cst)))
return cst.getZExtValue();
return std::nullopt;
}
template <typename OpType>
static bool staticallyOutOfBounds(OpType op) {
if (!op.getBoundsCheck())
return false;
MemRefType bufferType = op.getMemref().getType();
if (!bufferType.hasStaticShape())
return false;
int64_t offset;
SmallVector<int64_t> strides;
if (failed(getStridesAndOffset(bufferType, strides, offset)))
return false;
int64_t result = offset + op.getIndexOffset().value_or(0);
if (op.getSgprOffset()) {
std::optional<uint32_t> sgprOffset = getConstantUint32(op.getSgprOffset());
if (!sgprOffset)
return false;
result += *sgprOffset;
}
if (strides.size() != op.getIndices().size())
return false;
int64_t indexVal = 0;
for (auto pair : llvm::zip(strides, op.getIndices())) {
int64_t stride = std::get<0>(pair);
Value idx = std::get<1>(pair);
std::optional<uint32_t> idxVal = getConstantUint32(idx);
if (!idxVal)
return false;
indexVal += stride * *idxVal;
}
result += indexVal;
if (result > std::numeric_limits<uint32_t>::max())
// Overflow means don't drop
return false;
return result >= bufferType.getNumElements();
}
namespace {
struct RemoveStaticallyOobBufferLoads final
: public OpRewritePattern<RawBufferLoadOp> {
using OpRewritePattern<RawBufferLoadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(RawBufferLoadOp op,
PatternRewriter &rw) const override {
if (!staticallyOutOfBounds(op))
return failure();
Type loadType = op.getResult().getType();
rw.replaceOpWithNewOp<arith::ConstantOp>(op, loadType,
rw.getZeroAttr(loadType));
return success();
}
};
template <typename OpType>
struct RemoveStaticallyOobBufferWrites final : public OpRewritePattern<OpType> {
using OpRewritePattern<OpType>::OpRewritePattern;
LogicalResult matchAndRewrite(OpType op, PatternRewriter &rw) const override {
if (!staticallyOutOfBounds(op))
return failure();
rw.eraseOp(op);
return success();
}
};
} // end namespace
void RawBufferLoadOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<RemoveStaticallyOobBufferLoads>(context);
}
void RawBufferStoreOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<RemoveStaticallyOobBufferWrites<RawBufferStoreOp>>(context);
}
void RawBufferAtomicFaddOp::getCanonicalizationPatterns(
RewritePatternSet &results, MLIRContext *context) {
results.add<RemoveStaticallyOobBufferWrites<RawBufferAtomicFaddOp>>(context);
}
//===----------------------------------------------------------------------===//
// MFMAOp
//===----------------------------------------------------------------------===//
LogicalResult MFMAOp::verify() {
constexpr uint32_t waveSize = 64;
Builder b(getContext());
Type sourceType = getSourceA().getType();
Type destType = getDestC().getType();
Type sourceElem = sourceType, destElem = destType;
uint32_t sourceLen = 1, destLen = 1;
if (auto sourceVector = sourceType.dyn_cast<VectorType>()) {
sourceLen = sourceVector.getNumElements();
sourceElem = sourceVector.getElementType();
}
if (auto destVector = destType.dyn_cast<VectorType>()) {
destLen = destVector.getNumElements();
destElem = destVector.getElementType();
}
// Normalize the wider integer types the compiler expects to i8
if (sourceElem.isInteger(32)) {
sourceLen *= 4;
sourceElem = b.getI8Type();
}
if (sourceElem.isInteger(64)) {
sourceLen *= 8;
sourceElem = b.getI8Type();
}
int64_t numSourceElems = (getM() * getK() * getBlocks()) / waveSize;
if (sourceLen != numSourceElems)
return emitOpError("expected " + Twine(numSourceElems) +
" source values for this operation but got " +
Twine(sourceLen));
int64_t numDestElems = (getM() * getN() * getBlocks()) / waveSize;
if (destLen != numDestElems)
return emitOpError("expected " + Twine(numDestElems) +
" result values for this operation but got " +
Twine(destLen));
if (destElem.isF64() && getBlgp() != MFMAPermB::none)
return emitOpError(
"double-precision ops do not support permuting lanes of B");
if (destElem.isF64() && getCbsz() != 0)
return emitOpError(
"double-precision ops do not support permuting lanes of A");
if (getAbid() >= (1u << getCbsz()))
return emitOpError(
"block ID for permuting A (abid) must be below 2 ** cbsz");
if ((getNegateA() || getNegateB() || getNegateC()) && !destElem.isF64())
return emitOpError(
"negation flags only available for double-precision operations");
return success();
}
#include "mlir/Dialect/AMDGPU/AMDGPUEnums.cpp.inc"
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/AMDGPU/AMDGPUAttributes.cpp.inc"
#define GET_OP_CLASSES
#include "mlir/Dialect/AMDGPU/AMDGPU.cpp.inc"
|