1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
|
//===- GPUTransformOps.cpp - Implementation of GPU transform ops ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.h"
#include "mlir/Dialect/PDL/IR/PDL.h"
#include "mlir/Dialect/SCF/IR/DeviceMappingInterface.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Transform/IR/TransformDialect.h"
#include "mlir/Dialect/Transform/IR/TransformInterfaces.h"
#include "mlir/Dialect/Transform/IR/TransformUtils.h"
#include "mlir/IR/IRMapping.h"
using namespace mlir;
using namespace mlir::gpu;
using namespace mlir::transform;
/// Check if given mapping attributes are one of the desired attributes
static DiagnosedSilenceableFailure
checkAttributeType(ArrayRef<DeviceMappingAttrInterface> threadMappingAttributes,
const std::optional<ArrayAttr> &foreachMapping,
std::optional<TransformOpInterface> transformOp) {
if (!foreachMapping.has_value())
return transformOp->emitSilenceableError() << "mapping must be present";
DenseSet<Attribute> seen;
for (Attribute map : foreachMapping->getValue()) {
if (!llvm::is_contained(threadMappingAttributes, map)) {
return transformOp->emitDefiniteFailure()
<< "mapping must be one of " << threadMappingAttributes;
}
if (llvm::is_contained(seen, map)) {
return transformOp->emitDefiniteFailure()
<< map
<< " is duplicated, cannot map different "
"loops to the same processor";
}
seen.insert(map);
}
return DiagnosedSilenceableFailure::success();
}
/// Determines if the size of the kernel configuration is supported by the GPU
/// architecture being used. It presently makes use of CUDA limitations, however
/// that aspect may be enhanced for other GPUs.
static DiagnosedSilenceableFailure checkGpuLimits(
TransformOpInterface transformOp, std::optional<int64_t> gridDimX,
std::optional<int64_t> gridDimY, std::optional<int64_t> gridDimZ,
std::optional<int64_t> blockDimX, std::optional<int64_t> blockDimY,
std::optional<int64_t> blockDimZ) {
static constexpr int maxTotalBlockdim = 1024;
static constexpr int maxBlockdimx = 1024;
static constexpr int maxBlockdimy = 1024;
static constexpr int maxBlockdimz = 64;
static constexpr int maxTotalGriddim = 2147483647;
static constexpr int maxGriddimx = 2147483647;
static constexpr int maxGriddimy = 65535;
static constexpr int maxGriddimz = 65535;
if ((blockDimX.value_or(1) * blockDimY.value_or(1) * blockDimZ.value_or(1)) >
maxTotalBlockdim ||
(gridDimX.value_or(1) * gridDimY.value_or(1) * gridDimZ.value_or(1)) >
maxTotalGriddim ||
blockDimX.value_or(1) > maxBlockdimx ||
blockDimY.value_or(1) > maxBlockdimy ||
blockDimZ.value_or(1) > maxBlockdimz ||
gridDimY.value_or(1) > maxGriddimy ||
gridDimZ.value_or(1) > maxGriddimz ||
gridDimX.value_or(1) > maxGriddimx) {
return transformOp.emitSilenceableError()
<< "Trying to launch a GPU kernel with gridDim = ("
<< gridDimX.value_or(1) << ", " << gridDimY.value_or(1) << ", "
<< gridDimZ.value_or(1) << ") blockDim = (" << blockDimX.value_or(1)
<< ", " << blockDimY.value_or(1) << ", " << blockDimZ.value_or(1)
<< "). It is larger than the limits.";
}
return DiagnosedSilenceableFailure::success();
}
/// Creates an empty-body gpu::LaunchOp using the provided kernel settings and
/// put a terminator within.
static DiagnosedSilenceableFailure
createGpuLaunch(RewriterBase &rewriter, Location loc,
TransformOpInterface transformOp, LaunchOp &launchOp,
std::optional<int64_t> gridDimX = std::nullopt,
std::optional<int64_t> gridDimY = std::nullopt,
std::optional<int64_t> gridDimZ = std::nullopt,
std::optional<int64_t> blockDimX = std::nullopt,
std::optional<int64_t> blockDimY = std::nullopt,
std::optional<int64_t> blockDimZ = std::nullopt) {
DiagnosedSilenceableFailure diag =
checkGpuLimits(transformOp, gridDimX, gridDimY, gridDimZ, blockDimX,
blockDimY, blockDimZ);
if (!diag.succeeded())
return diag;
auto createConst = [&](int dim) {
return rewriter.create<arith::ConstantIndexOp>(loc, dim);
};
OpBuilder::InsertionGuard guard(rewriter);
Value one = createConst(1);
Value gridSizeX = gridDimX.has_value() ? createConst(gridDimX.value()) : one;
Value gridSizeY = gridDimY.has_value() ? createConst(gridDimY.value()) : one;
Value gridSizeZ = gridDimZ.has_value() ? createConst(gridDimZ.value()) : one;
Value blkSizeX = blockDimX.has_value() ? createConst(blockDimX.value()) : one;
Value blkSizeY = blockDimY.has_value() ? createConst(blockDimY.value()) : one;
Value blkSizeZ = blockDimZ.has_value() ? createConst(blockDimZ.value()) : one;
launchOp = rewriter.create<LaunchOp>(loc, gridSizeX, gridSizeY, gridSizeZ,
blkSizeX, blkSizeY, blkSizeZ);
rewriter.setInsertionPointToEnd(&launchOp.getBody().front());
rewriter.create<TerminatorOp>(loc);
return DiagnosedSilenceableFailure::success();
}
/// Alter kernel configuration of the given kernel.
static DiagnosedSilenceableFailure
alterGpuLaunch(TrivialPatternRewriter &rewriter, LaunchOp gpuLaunch,
TransformOpInterface transformOp,
std::optional<int64_t> gridDimX = std::nullopt,
std::optional<int64_t> gridDimY = std::nullopt,
std::optional<int64_t> gridDimZ = std::nullopt,
std::optional<int64_t> blockDimX = std::nullopt,
std::optional<int64_t> blockDimY = std::nullopt,
std::optional<int64_t> blockDimZ = std::nullopt) {
DiagnosedSilenceableFailure diag =
checkGpuLimits(transformOp, gridDimX, gridDimY, gridDimZ, blockDimX,
blockDimY, blockDimZ);
if (!diag.succeeded())
return diag;
KernelDim3 currentBlockdim = gpuLaunch.getBlockSizeOperandValues();
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointAfterValue(currentBlockdim.x);
auto createConstValue = [&](int dim) {
return rewriter.create<arith::ConstantIndexOp>(currentBlockdim.x.getLoc(),
dim);
};
if (gridDimX.has_value())
gpuLaunch.getGridSizeXMutable().assign(createConstValue(gridDimX.value()));
if (gridDimY.has_value())
gpuLaunch.getGridSizeYMutable().assign(createConstValue(gridDimY.value()));
if (gridDimZ.has_value())
gpuLaunch.getGridSizeZMutable().assign(createConstValue(gridDimZ.value()));
if (blockDimX.has_value())
gpuLaunch.getBlockSizeXMutable().assign(
createConstValue(blockDimX.value()));
if (blockDimY.has_value())
gpuLaunch.getBlockSizeYMutable().assign(
createConstValue(blockDimY.value()));
if (blockDimZ.has_value())
gpuLaunch.getBlockSizeZMutable().assign(
createConstValue(blockDimZ.value()));
return DiagnosedSilenceableFailure::success();
}
//===----------------------------------------------------------------------===//
// MapForeachToBlocks
//===----------------------------------------------------------------------===//
DiagnosedSilenceableFailure mlir::transform::gpu::mapForeachToBlocksImpl(
RewriterBase &rewriter, scf::ForeachThreadOp foreachThreadOp,
function_ref<void(RewriterBase &, scf::ForeachThreadOp,
SmallVectorImpl<Value> &)>
blockIdGenerator,
SmallVectorImpl<int64_t> &gridDims, TransformOpInterface transformOp,
const ArrayRef<DeviceMappingAttrInterface> &mappingAttributes) {
// Step 0. Target-specific verifications. There is no good place to anchor
// those right now: the ForeachThreadOp is target-independent and the
// transform op does not apply to individual ForeachThreadOp.
Location loc = foreachThreadOp->getLoc();
if (foreachThreadOp.getNumResults() > 0)
return transformOp.emitSilenceableError()
<< "only bufferized scf.foreach_thread lowers to "
"gpu.block_id";
if (foreachThreadOp.getNumThreads().size() > 3)
return transformOp.emitSilenceableError()
<< "scf.foreach_thread with rank > 3 does not lower to "
"gpu.block_id";
if (llvm::any_of(foreachThreadOp.getNumThreads(), [](Value v) {
return !v.getDefiningOp<arith::ConstantIndexOp>();
})) {
return transformOp.emitSilenceableError()
<< "unsupported dynamic griddim size";
}
SmallVector<Attribute> blockMapping =
llvm::to_vector(foreachThreadOp.getMapping()->getValue());
// Step 1. Complete the blockMapping to a full mapping (with 1s) if necessary.
SmallVector<Value> numBlocks =
llvm::to_vector(foreachThreadOp.getNumThreads());
// Ensure we have 3 block sizes, one for each id.
Value one;
for (auto attr : mappingAttributes) {
if (std::find(blockMapping.begin(), blockMapping.end(), attr) ==
blockMapping.end()) {
blockMapping.push_back(attr);
one = one ? one : rewriter.create<arith::ConstantIndexOp>(loc, 1);
numBlocks.push_back(one);
}
}
// Step 2. sort the values by the corresponding DeviceMappingAttrInterface.
auto comparator = [&](DeviceMappingAttrInterface a,
DeviceMappingAttrInterface b) -> bool {
return a.getMappingId() < b.getMappingId();
};
SmallVector<Value> gridDimValues = scf::ForeachThreadOp::getValuesSortedByKey(
blockMapping, numBlocks, comparator);
for (Value v : gridDimValues)
gridDims.push_back(v.getDefiningOp<arith::ConstantIndexOp>().value());
// Step 3. Generate the blockIds using the provided generator and map the
// induction variables to the newly created ops.
SmallVector<Value> blockOps;
blockIdGenerator(rewriter, foreachThreadOp, blockOps);
IRMapping bvm;
for (auto [blockIdx, blockDim] :
llvm::zip(foreachThreadOp.getThreadIndices(), blockMapping)) {
bvm.map(blockIdx,
blockOps[static_cast<int64_t>(
blockDim.cast<DeviceMappingAttrInterface>().getMappingId())]);
}
// Step 4. Move the body of foreachThreadOp.
// Erase the terminator first, it will not be used since we are on buffers.
rewriter.eraseOp(foreachThreadOp.getTerminator());
Block *targetBlock = foreachThreadOp->getBlock();
Block::iterator insertionPoint = Block::iterator(foreachThreadOp);
Block &sourceBlock = foreachThreadOp.getRegion().front();
targetBlock->getOperations().splice(insertionPoint,
sourceBlock.getOperations());
// Step 5. RAUW thread indices to thread ops.
for (Value loopIndex : foreachThreadOp.getThreadIndices()) {
Value blockIdx = bvm.lookup(loopIndex);
rewriter.replaceAllUsesWith(loopIndex, blockIdx);
}
// Step 6. Erase old op.
rewriter.eraseOp(foreachThreadOp);
return DiagnosedSilenceableFailure::success();
}
DiagnosedSilenceableFailure mlir::transform::gpu::findTopLevelForeachThreadOp(
Operation *target, scf::ForeachThreadOp &topLevelForeachThreadOp,
TransformOpInterface transformOp) {
auto walkResult = target->walk([&](scf::ForeachThreadOp foreachThreadOp) {
if (foreachThreadOp->getParentOfType<scf::ForeachThreadOp>())
return WalkResult::advance();
if (topLevelForeachThreadOp)
// TODO: Handle multiple foreach if there is no dependences between them
return WalkResult::interrupt();
topLevelForeachThreadOp = foreachThreadOp;
return WalkResult::advance();
});
if (walkResult.wasInterrupted())
return transformOp.emitSilenceableError()
<< "could not find a unique topLevel scf.foreach_thread";
return DiagnosedSilenceableFailure::success();
}
/// This is a helper that is only used in
/// rewriteTopLevelForeachThreadToGpuBlocks. It generates GPU dialects
/// block_id.
static void generateGpuBlockIds(RewriterBase &rewriter,
scf::ForeachThreadOp foreachOp,
SmallVectorImpl<Value> &blockOps) {
Location loc = foreachOp->getLoc();
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(foreachOp);
IndexType indexType = rewriter.getIndexType();
blockOps = SmallVector<Value>{
rewriter.create<BlockIdOp>(loc, indexType, Dimension::x),
rewriter.create<BlockIdOp>(loc, indexType, Dimension::y),
rewriter.create<BlockIdOp>(loc, indexType, Dimension::z)};
}
DiagnosedSilenceableFailure
transform::MapForeachToBlocks::applyToOne(Operation *target,
ApplyToEachResultList &results,
transform::TransformState &state) {
LaunchOp gpuLaunch = dyn_cast<LaunchOp>(target);
TrivialPatternRewriter rewriter(getContext());
auto transformOp = cast<TransformOpInterface>(getOperation());
if (!getGenerateGpuLaunch() && !gpuLaunch) {
DiagnosedSilenceableFailure diag =
emitSilenceableError()
<< "Given target is not gpu.launch, set `generate_gpu_launch` "
"attribute";
diag.attachNote(target->getLoc()) << "when applied to this payload op";
return diag;
}
scf::ForeachThreadOp topLevelForeachThreadOp;
DiagnosedSilenceableFailure diag =
mlir::transform::gpu::findTopLevelForeachThreadOp(
target, topLevelForeachThreadOp, transformOp);
if (!diag.succeeded()) {
diag.attachNote(target->getLoc()) << "when applied to this payload op";
return diag;
}
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(topLevelForeachThreadOp);
// Generate gpu launch here and move the foreach_thread inside
if (getGenerateGpuLaunch()) {
DiagnosedSilenceableFailure diag =
createGpuLaunch(rewriter, target->getLoc(), transformOp, gpuLaunch);
if (!diag.succeeded()) {
return diag;
}
rewriter.setInsertionPointToStart(&gpuLaunch.getBody().front());
Operation *newForeachThreadOp = rewriter.clone(*topLevelForeachThreadOp);
rewriter.eraseOp(topLevelForeachThreadOp);
topLevelForeachThreadOp = cast<scf::ForeachThreadOp>(newForeachThreadOp);
}
SmallVector<int64_t> gridDim = extractFromI64ArrayAttr(getGridDim());
SmallVector<DeviceMappingAttrInterface> blockMappingAttributes = {
GPUBlockMappingAttr::get(getContext(), Blocks::DimX),
GPUBlockMappingAttr::get(getContext(), Blocks::DimY),
GPUBlockMappingAttr::get(getContext(), Blocks::DimZ)};
diag = checkAttributeType(blockMappingAttributes,
topLevelForeachThreadOp.getMapping(), transformOp);
if (diag.succeeded())
diag = mlir::transform::gpu::mapForeachToBlocksImpl(
rewriter, topLevelForeachThreadOp, generateGpuBlockIds, gridDim,
transformOp, blockMappingAttributes);
if (diag.succeeded()) {
diag = alterGpuLaunch(rewriter, gpuLaunch,
cast<TransformOpInterface>(getOperation()),
gridDim[0], gridDim[1], gridDim[2]);
}
results.push_back(gpuLaunch);
return diag;
}
//===----------------------------------------------------------------------===//
// MapNestedForeachToThreads
//===----------------------------------------------------------------------===//
/// Searches `scf.foreach_thread` ops nested under `target` and maps each such
/// op to GPU threads. Mapping is one-to-one and the induction variables of
/// `scf.foreach_thread` are rewritten to gpu.thread_id according to the
/// thread_dim_mapping attribute. Sibling `scf.foreach_thread` are supported in
/// which case, the union of the number of threads is computed and may result
/// in predication. Dynamic, `scf.foreach_thread` trip counts are currently
/// not supported. Dynamic block dim sizes are currently not supported.
static DiagnosedSilenceableFailure rewriteOneForeachThreadToGpuThreads(
RewriterBase &rewriter, scf::ForeachThreadOp foreachThreadOp,
const SmallVectorImpl<int64_t> &globalBlockDims, bool syncAfterDistribute,
std::optional<TransformOpInterface> transformOp,
const ArrayRef<DeviceMappingAttrInterface> &threadMappingAttributes) {
// Step 0. Target-specific verifications. There is no good place to anchor
// those right now: the ForeachThreadOp is target-independent and the
// transform op does not apply to individual ForeachThreadOp.
auto failureHelper =
[&](const Twine &message) -> DiagnosedSilenceableFailure {
if (transformOp.has_value()) {
return transformOp->emitSilenceableError() << message;
}
return emitDefiniteFailure(foreachThreadOp, message);
};
Location loc = foreachThreadOp->getLoc();
if (foreachThreadOp.getNumResults() > 0)
return failureHelper(
"only bufferized scf.foreach_thread lowers to gpu.thread_id");
if (foreachThreadOp.getNumThreads().size() > 3)
return failureHelper(
"scf.foreach_thread with rank > 3 does not lower to gpu.thread_id");
if (llvm::any_of(foreachThreadOp.getNumThreads(), [](Value v) {
return !v.getDefiningOp<arith::ConstantIndexOp>();
})) {
return failureHelper("unsupported dynamic blockdim size");
}
if (!foreachThreadOp.getMapping().has_value())
return failureHelper("mapping must be present");
SmallVector<Attribute> threadMapping =
llvm::to_vector(foreachThreadOp.getMapping()->getValue());
// Step 1. Complete the threadMapping to a full mapping (with 1s) if
// necessary.
SmallVector<Value> numThreads =
llvm::to_vector(foreachThreadOp.getNumThreads());
// Ensure we have 3 block sizes, one for each id.
Value one;
for (auto attr : threadMappingAttributes) {
if (std::find(threadMapping.begin(), threadMapping.end(), attr) ==
threadMapping.end()) {
threadMapping.push_back(attr);
one = one ? one : rewriter.create<arith::ConstantIndexOp>(loc, 1);
numThreads.push_back(one);
}
}
// Step 2. sort the values by the corresponding DeviceMappingAttrInterface.
auto comparator = [&](DeviceMappingAttrInterface a,
DeviceMappingAttrInterface b) -> bool {
return a.getMappingId() < b.getMappingId();
};
SmallVector<Value> blockDimValues =
scf::ForeachThreadOp::getValuesSortedByKey(threadMapping, numThreads,
comparator);
SmallVector<int64_t> blockDims =
llvm::to_vector(llvm::map_range(blockDimValues, [](Value v) {
return v.getDefiningOp<arith::ConstantIndexOp>().value();
}));
// Step 3. Create the gpu.thread ops and map the induction variables to the
// newly created ops.
IndexType indexType = rewriter.getIndexType();
SmallVector<Value> threadOps{
rewriter.create<ThreadIdOp>(loc, indexType, Dimension::x),
rewriter.create<ThreadIdOp>(loc, indexType, Dimension::y),
rewriter.create<ThreadIdOp>(loc, indexType, Dimension::z)};
// Replace ids of dimension size 1 by zero to simplify the IR.
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
for (size_t i : llvm::seq(size_t(0), globalBlockDims.size())) {
if (globalBlockDims[i] == 1)
threadOps[i] = zero;
}
IRMapping bvm;
for (auto [blockIdx, blockDim] :
llvm::zip(foreachThreadOp.getThreadIndices(), threadMapping)) {
bvm.map(
blockIdx,
threadOps[blockDim.cast<DeviceMappingAttrInterface>().getMappingId()]);
}
// Step 4. Maybe create conditionals to predicate the region.
Value predicate;
for (auto [threadId, blockDim, globalBlockDim] :
llvm::zip(threadOps, blockDims, globalBlockDims)) {
if (blockDim > globalBlockDim) {
return failureHelper(
"The requested GPU threads are fewer than the number of loop trip "
"counts. Try to tile scf.foreach_thread before mapping or set "
"small blockDim.");
}
if (blockDim == globalBlockDim)
continue;
Value blockIdx = rewriter.create<arith::ConstantIndexOp>(loc, blockDim);
Value tmpPredicate = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::ult, threadId, blockIdx);
predicate =
predicate ? rewriter.create<arith::AndIOp>(loc, predicate, tmpPredicate)
: tmpPredicate;
}
// Step 5. Move the body of foreachThreadOp.
// Erase the terminator first, it will not be used.
rewriter.eraseOp(foreachThreadOp.getTerminator());
Block *targetBlock;
Block::iterator insertionPoint;
if (predicate) {
// Step 5.a. If predicated, move at the beginning.
auto ifOp =
rewriter.create<scf::IfOp>(loc, predicate, /*withElseRegion=*/false);
targetBlock = ifOp.thenBlock();
insertionPoint = ifOp.thenBlock()->begin();
} else {
// Step 5.b. Otherwise, move inline just before foreachThreadOp.
targetBlock = foreachThreadOp->getBlock();
insertionPoint = Block::iterator(foreachThreadOp);
}
Block &sourceBlock = foreachThreadOp.getRegion().front();
targetBlock->getOperations().splice(insertionPoint,
sourceBlock.getOperations());
// Step 6. RAUW thread indices to thread ops.
for (Value loopIndex : foreachThreadOp.getThreadIndices()) {
Value threadIdx = bvm.lookup(loopIndex);
rewriter.replaceAllUsesWith(loopIndex, threadIdx);
}
// Step 7. syncthreads.
// TODO: Need warpsync
if (syncAfterDistribute)
rewriter.create<BarrierOp>(loc);
// Step 8. Erase old op.
rewriter.eraseOp(foreachThreadOp);
return DiagnosedSilenceableFailure::success();
}
DiagnosedSilenceableFailure mlir::transform::gpu::mapNestedForeachToThreadsImpl(
RewriterBase &rewriter, Operation *target,
const SmallVectorImpl<int64_t> &blockDim, bool syncAfterDistribute,
std::optional<TransformOpInterface> transformOp,
const ArrayRef<DeviceMappingAttrInterface> &threadMappingAttributes) {
DiagnosedSilenceableFailure diag = DiagnosedSilenceableFailure::success();
target->walk([&](scf::ForeachThreadOp foreachThreadOp) {
diag = checkAttributeType(threadMappingAttributes,
foreachThreadOp.getMapping(), transformOp);
if (diag.succeeded()) {
rewriter.setInsertionPoint(foreachThreadOp);
diag = rewriteOneForeachThreadToGpuThreads(
rewriter, foreachThreadOp, blockDim, syncAfterDistribute, transformOp,
threadMappingAttributes);
}
return diag.succeeded() ? WalkResult::advance() : WalkResult::interrupt();
});
return diag;
}
DiagnosedSilenceableFailure transform::MapNestedForeachToThreads::applyToOne(
Operation *target, ApplyToEachResultList &results, TransformState &state) {
LaunchOp gpuLaunch = dyn_cast<LaunchOp>(target);
auto transformOp = cast<TransformOpInterface>(getOperation());
if (!gpuLaunch) {
return emitSilenceableError() << "Given target is not gpu.launch";
}
SmallVector<int64_t> blockDim = extractFromI64ArrayAttr(getBlockDim());
blockDim.resize(/*size=*/3, /*value=*/1);
DiagnosedSilenceableFailure diag =
checkGpuLimits(transformOp, std::nullopt, std::nullopt, std::nullopt,
blockDim[0], blockDim[1], blockDim[2]);
if (diag.isSilenceableFailure()) {
diag.attachNote(getLoc()) << getBlockDimAttrName() << " is very large";
return diag;
}
MLIRContext *ctx = getContext();
TrivialPatternRewriter rewriter(ctx);
rewriter.setInsertionPoint(target);
SmallVector<DeviceMappingAttrInterface> threadMappingAttributes = {
GPUThreadMappingAttr::get(ctx, Threads::DimX),
GPUThreadMappingAttr::get(ctx, Threads::DimY),
GPUThreadMappingAttr::get(ctx, Threads::DimZ)};
diag = mlir::transform::gpu::mapNestedForeachToThreadsImpl(
rewriter, target, blockDim, getSyncAfterDistribute(), transformOp,
threadMappingAttributes);
if (diag.succeeded()) {
diag = alterGpuLaunch(rewriter, gpuLaunch, transformOp, std::nullopt,
std::nullopt, std::nullopt, blockDim[0], blockDim[1],
blockDim[2]);
}
results.push_back(gpuLaunch.getOperation());
return diag;
}
//===----------------------------------------------------------------------===//
// Transform op registration
//===----------------------------------------------------------------------===//
namespace {
/// Registers new ops and declares PDL as dependent dialect since the
/// additional ops are using PDL types for operands and results.
class GPUTransformDialectExtension
: public transform::TransformDialectExtension<
GPUTransformDialectExtension> {
public:
GPUTransformDialectExtension() {
declareDependentDialect<pdl::PDLDialect>();
declareGeneratedDialect<scf::SCFDialect>();
declareGeneratedDialect<arith::ArithDialect>();
declareGeneratedDialect<GPUDialect>();
registerTransformOps<
#define GET_OP_LIST
#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.cpp.inc"
>();
}
};
} // namespace
#define GET_OP_CLASSES
#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.cpp.inc"
void mlir::gpu::registerTransformDialectExtension(DialectRegistry ®istry) {
registry.addExtensions<GPUTransformDialectExtension>();
}
|