1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
//===- LowerGPUToCUBIN.cpp - Convert GPU kernel to CUBIN blob -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass that serializes a gpu module into CUBIN blob and
// adds that blob as a string attribute of the module.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/GPU/Transforms/Passes.h"
#if MLIR_GPU_TO_CUBIN_PASS_ENABLE
#include "mlir/Pass/Pass.h"
#include "mlir/Target/LLVMIR/Dialect/NVVM/NVVMToLLVMIRTranslation.h"
#include "mlir/Target/LLVMIR/Export.h"
#include "llvm/Support/TargetSelect.h"
#include <cuda.h>
using namespace mlir;
static void emitCudaError(const llvm::Twine &expr, const char *buffer,
CUresult result, Location loc) {
const char *error;
cuGetErrorString(result, &error);
emitError(loc, expr.concat(" failed with error code ")
.concat(llvm::Twine{error})
.concat("[")
.concat(buffer)
.concat("]"));
}
#define RETURN_ON_CUDA_ERROR(expr) \
do { \
if (auto status = (expr)) { \
emitCudaError(#expr, jitErrorBuffer, status, loc); \
return {}; \
} \
} while (false)
namespace {
class SerializeToCubinPass
: public PassWrapper<SerializeToCubinPass, gpu::SerializeToBlobPass> {
public:
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(SerializeToCubinPass)
SerializeToCubinPass(StringRef triple = "nvptx64-nvidia-cuda",
StringRef chip = "sm_35", StringRef features = "+ptx60");
StringRef getArgument() const override { return "gpu-to-cubin"; }
StringRef getDescription() const override {
return "Lower GPU kernel function to CUBIN binary annotations";
}
private:
void getDependentDialects(DialectRegistry ®istry) const override;
// Serializes PTX to CUBIN.
std::unique_ptr<std::vector<char>>
serializeISA(const std::string &isa) override;
};
} // namespace
// Sets the 'option' to 'value' unless it already has a value.
static void maybeSetOption(Pass::Option<std::string> &option, StringRef value) {
if (!option.hasValue())
option = value.str();
}
SerializeToCubinPass::SerializeToCubinPass(StringRef triple, StringRef chip,
StringRef features) {
maybeSetOption(this->triple, triple);
maybeSetOption(this->chip, chip);
maybeSetOption(this->features, features);
}
void SerializeToCubinPass::getDependentDialects(
DialectRegistry ®istry) const {
registerNVVMDialectTranslation(registry);
gpu::SerializeToBlobPass::getDependentDialects(registry);
}
std::unique_ptr<std::vector<char>>
SerializeToCubinPass::serializeISA(const std::string &isa) {
Location loc = getOperation().getLoc();
char jitErrorBuffer[4096] = {0};
RETURN_ON_CUDA_ERROR(cuInit(0));
// Linking requires a device context.
CUdevice device;
RETURN_ON_CUDA_ERROR(cuDeviceGet(&device, 0));
CUcontext context;
RETURN_ON_CUDA_ERROR(cuCtxCreate(&context, 0, device));
CUlinkState linkState;
CUjit_option jitOptions[] = {CU_JIT_ERROR_LOG_BUFFER,
CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES};
void *jitOptionsVals[] = {jitErrorBuffer,
reinterpret_cast<void *>(sizeof(jitErrorBuffer))};
RETURN_ON_CUDA_ERROR(cuLinkCreate(2, /* number of jit options */
jitOptions, /* jit options */
jitOptionsVals, /* jit option values */
&linkState));
auto kernelName = getOperation().getName().str();
RETURN_ON_CUDA_ERROR(cuLinkAddData(
linkState, CUjitInputType::CU_JIT_INPUT_PTX,
const_cast<void *>(static_cast<const void *>(isa.c_str())), isa.length(),
kernelName.c_str(), 0, /* number of jit options */
nullptr, /* jit options */
nullptr /* jit option values */
));
void *cubinData;
size_t cubinSize;
RETURN_ON_CUDA_ERROR(cuLinkComplete(linkState, &cubinData, &cubinSize));
char *cubinAsChar = static_cast<char *>(cubinData);
auto result =
std::make_unique<std::vector<char>>(cubinAsChar, cubinAsChar + cubinSize);
// This will also destroy the cubin data.
RETURN_ON_CUDA_ERROR(cuLinkDestroy(linkState));
RETURN_ON_CUDA_ERROR(cuCtxDestroy(context));
return result;
}
// Register pass to serialize GPU kernel functions to a CUBIN binary annotation.
void mlir::registerGpuSerializeToCubinPass() {
PassRegistration<SerializeToCubinPass> registerSerializeToCubin([] {
// Initialize LLVM NVPTX backend.
LLVMInitializeNVPTXTarget();
LLVMInitializeNVPTXTargetInfo();
LLVMInitializeNVPTXTargetMC();
LLVMInitializeNVPTXAsmPrinter();
return std::make_unique<SerializeToCubinPass>();
});
}
std::unique_ptr<Pass> mlir::createGpuSerializeToCubinPass(StringRef triple,
StringRef arch,
StringRef features) {
return std::make_unique<SerializeToCubinPass>(triple, arch, features);
}
#else // MLIR_GPU_TO_CUBIN_PASS_ENABLE
void mlir::registerGpuSerializeToCubinPass() {}
#endif // MLIR_GPU_TO_CUBIN_PASS_ENABLE
|