1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
//===- ConvertToDestinationStyle.cpp - Convert non-DPS to DPS ops ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains patterns to convert non-DPS ops to DPS ops. New
// tensor.empty ops are inserted as a destination. Such tensor.empty can be
// eliminated with "empty tensor elimination", allowing them to bufferize
// without an allocation (assuming there are no further conflicts).
//
//===----------------------------------------------------------------------===//
//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/Support/Debug.h"
using namespace mlir;
using namespace mlir::tensor;
namespace {
/// Lower tensor.generate to linalg.generic.
struct GenerateOpConverter : public OpRewritePattern<GenerateOp> {
using OpRewritePattern<GenerateOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenerateOp generateOp,
PatternRewriter &rewriter) const override {
// Only ops with exactly one block are supported.
if (!generateOp.getBody().hasOneBlock())
return failure();
Location loc = generateOp.getLoc();
RankedTensorType tensorType = generateOp.getType().cast<RankedTensorType>();
// Create tensor.empty.
auto emptyOp = rewriter.create<EmptyOp>(loc, tensorType,
generateOp.getDynamicExtents());
// Create linalg.generic.
SmallVector<utils::IteratorType> iteratorTypes(
tensorType.getRank(), utils::IteratorType::parallel);
SmallVector<AffineMap> indexingMaps(
1, rewriter.getMultiDimIdentityMap(tensorType.getRank()));
auto genericOp = rewriter.create<linalg::GenericOp>(
loc, tensorType, /*inputs=*/ValueRange(),
/*outputs=*/ValueRange{emptyOp.getResult()}, /*indexingMaps=*/
indexingMaps, iteratorTypes);
Block *body = rewriter.createBlock(&genericOp->getRegion(0), {},
tensorType.getElementType(), loc);
rewriter.setInsertionPointToStart(body);
SmallVector<Value> bbArgReplacements;
for (int64_t i = 0; i < tensorType.getRank(); ++i)
bbArgReplacements.push_back(rewriter.create<linalg::IndexOp>(loc, i));
rewriter.mergeBlocks(&generateOp.getBody().front(), body,
bbArgReplacements);
// Update terminator.
auto yieldOp = cast<tensor::YieldOp>(body->getTerminator());
rewriter.replaceOpWithNewOp<linalg::YieldOp>(yieldOp, yieldOp.getValue());
// Replace tensor.generate.
rewriter.replaceOp(generateOp, genericOp->getResult(0));
return success();
}
};
/// Lower tensor.pad to linalg.generic + tensor.insert_slice.
struct PadOpConverter : public OpRewritePattern<PadOp> {
using OpRewritePattern<PadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(PadOp padOp,
PatternRewriter &rewriter) const override {
// Only ops with exactly one block are supported.
if (!padOp.getBodyRegion().hasOneBlock())
return failure();
// Create tensor.empty.
Location loc = padOp.getLoc();
RankedTensorType resultType = padOp.getResultType();
ReifiedRankedShapedTypeDims reifiedShape;
if (failed(cast<ReifyRankedShapedTypeOpInterface>(padOp.getOperation())
.reifyResultShapes(rewriter, reifiedShape)))
return rewriter.notifyMatchFailure(
padOp, "failed to reify tensor.pad op result shape");
SmallVector<Value> dynamicSizes;
for (int64_t i = 0; i < resultType.getRank(); ++i)
if (resultType.isDynamicDim(i))
dynamicSizes.push_back(reifiedShape[0][i]);
auto emptyOp = rewriter.create<EmptyOp>(loc, resultType, dynamicSizes);
// Examine the yielded value to decide if a linalg.generic is neede or a
// linalg.fill is sufficient.
Value filled;
Value yieldedValue =
cast<tensor::YieldOp>(padOp.getBody()->getTerminator()).getValue();
Attribute constYieldedValue;
// Is the yielded value a bbArg defined outside of the PadOp?
bool outsideBbArg =
yieldedValue.isa<BlockArgument>() &&
yieldedValue.cast<BlockArgument>().getOwner()->getParentOp() !=
padOp.getOperation();
// Is the yielded value an OpResult defined outside of the PadOp?
bool outsideOpResult =
yieldedValue.isa<OpResult>() &&
yieldedValue.getDefiningOp()->getParentOp() != padOp.getOperation();
bool invariantYieldedValue = outsideBbArg || outsideOpResult;
if (matchPattern(yieldedValue, m_Constant(&constYieldedValue))) {
// Padding with a constant: Create linalg.fill.
Dialect *arithDialect =
rewriter.getContext()->getLoadedDialect<arith::ArithDialect>();
Value fillValue = arithDialect
->materializeConstant(rewriter, constYieldedValue,
yieldedValue.getType(),
yieldedValue.getLoc())
->getResult(0);
auto fillOp = rewriter.create<linalg::FillOp>(
loc, ValueRange(fillValue), ValueRange(emptyOp.getResult()));
rewriter.setInsertionPointAfter(fillOp);
filled = fillOp.getResult(0);
} else if (invariantYieldedValue) {
// Padding with an invariant value.
auto fillOp = rewriter.create<linalg::FillOp>(
loc, ValueRange(yieldedValue), ValueRange(emptyOp.getResult()));
rewriter.setInsertionPointAfter(fillOp);
filled = fillOp.getResult(0);
} else {
// Create linalg.generic.
SmallVector<utils::IteratorType> iteratorTypes(
resultType.getRank(), utils::IteratorType::parallel);
SmallVector<AffineMap> indexingMaps(
1, rewriter.getMultiDimIdentityMap(resultType.getRank()));
auto genericOp = rewriter.create<linalg::GenericOp>(
loc, resultType, /*inputs=*/ValueRange(),
/*outputs=*/ValueRange{emptyOp.getResult()}, /*indexingMaps=*/
indexingMaps, iteratorTypes);
Block *body = rewriter.createBlock(&genericOp->getRegion(0), {},
resultType.getElementType(), loc);
rewriter.setInsertionPointToStart(body);
SmallVector<Value> bbArgReplacements;
for (int64_t i = 0; i < resultType.getRank(); ++i)
bbArgReplacements.push_back(rewriter.create<linalg::IndexOp>(loc, i));
rewriter.mergeBlocks(padOp.getBody(), body, bbArgReplacements);
// Update terminator.
auto yieldOp = cast<tensor::YieldOp>(body->getTerminator());
rewriter.replaceOpWithNewOp<linalg::YieldOp>(yieldOp, yieldOp.getValue());
rewriter.setInsertionPointAfter(genericOp);
filled = genericOp->getResult(0);
}
// Create tensor::InsertSliceOp.
SmallVector<OpFoldResult> sliceSizes =
getMixedSizes(rewriter, loc, padOp.getSource());
SmallVector<OpFoldResult> sliceStrides(resultType.getRank(),
rewriter.getIndexAttr(1));
rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
padOp, padOp.getSource(), filled,
/*offsets=*/padOp.getMixedLowPad(), sliceSizes, sliceStrides);
return success();
}
};
} // namespace
void linalg::populateConvertToDestinationStylePatterns(
RewritePatternSet &patterns) {
patterns.insert<GenerateOpConverter, PadOpConverter>(patterns.getContext());
}
|