1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
//===- DataLayoutPropagation.cpp -----------------------------------------===///
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/Support/Debug.h"
#include <optional>
namespace mlir {
#define GEN_PASS_DEF_LINALGDATALAYOUTPROPAGATION
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::linalg;
#define DEBUG_TYPE "linalg-data-layout-propagation"
namespace {
// The struct contains the infomation about mapping packing information to
// the iteration domain of Linalg ops.
struct PackInfo {
int64_t getNumTiledLoops() const { return tileToPointMapping.size(); };
// InnerDimsPos on iteration domain, which follows the order in pack ops.
SmallVector<int64_t> tiledDimsPos;
// The sizes of tiling data dimensions on iteration domain.
llvm::DenseMap<int64_t, OpFoldResult> domainDimAndTileMapping;
// The mapping from a dimension of iteration domain to the corresponding inner
// tiling dimension on iteration domain.
llvm::DenseMap<int64_t, int64_t> tileToPointMapping;
// The permutation of outer dims (on domain).
SmallVector<int64_t> outerDimsOnDomainPerm;
};
static PackInfo getPackingInfoFromConsumer(AffineMap indexingMap,
tensor::PackOp packOp) {
LLVM_DEBUG(
{ llvm::dbgs() << "--- Construct PackInfo From A Consumer ---\n"; });
PackInfo packInfo;
int64_t origNumDims = indexingMap.getNumDims();
SmallVector<AffineExpr> exprs(indexingMap.getResults());
ArrayRef<int64_t> innerDimsPos = packOp.getInnerDimsPos();
for (auto [index, innerDimPos, tileSize] :
llvm::zip_equal(llvm::seq<unsigned>(0, innerDimsPos.size()),
innerDimsPos, packOp.getMixedTiles())) {
int64_t domainDimPos =
exprs[innerDimPos].cast<AffineDimExpr>().getPosition();
packInfo.tiledDimsPos.push_back(domainDimPos);
packInfo.domainDimAndTileMapping[domainDimPos] = tileSize;
packInfo.tileToPointMapping[domainDimPos] = origNumDims + index;
LLVM_DEBUG({
llvm::dbgs() << "map innerDimPos=" << innerDimPos
<< " to iteration dimension (d" << domainDimPos << ", d"
<< packInfo.tileToPointMapping[domainDimPos]
<< "), which has size=("
<< packInfo.domainDimAndTileMapping[domainDimPos] << ")\n";
});
}
for (auto dim : packOp.getOuterDimsPerm())
packInfo.outerDimsOnDomainPerm.push_back(indexingMap.getDimPosition(dim));
if (!packInfo.outerDimsOnDomainPerm.empty()) {
LLVM_DEBUG({
llvm::dbgs() << "map outer dimsDimsPerm to ";
for (auto dim : packInfo.outerDimsOnDomainPerm)
llvm::dbgs() << dim << " ";
llvm::dbgs() << "\n";
});
}
return packInfo;
}
static SmallVector<int64_t> computeOuterDims(ArrayRef<int64_t> perm,
ArrayRef<AffineExpr> exprs) {
// Compute `outer_dims_perm`. See example:
// current exprs : (d0, d1, d2, d3) -> (d2, d3)
// perm : [0, 3, 1, 2]
// First map d2, d3 with their position in the array as:
// currentPositionTileLoops: dim | pos
// d2 | 0
// d3 | 1
// then scan `perm` in order and get the `outer_dims_perm`
// to be used, here it would be [1, 0].
assert(!perm.empty() && "expect perm not to be empty");
assert(!exprs.empty() && "expect exprs not to be empty");
if (exprs.size() == 1)
return {};
SmallVector<int64_t> outerDimsPerm;
DenseMap<int64_t, int64_t> currentPositionTileLoops;
for (auto [pos, expr] : llvm::enumerate(exprs)) {
unsigned posInDomain = expr.cast<AffineDimExpr>().getPosition();
currentPositionTileLoops[posInDomain] = pos;
}
for (int64_t loopIdx : perm) {
if (currentPositionTileLoops.count(loopIdx))
outerDimsPerm.push_back(currentPositionTileLoops.lookup(loopIdx));
}
return outerDimsPerm;
}
/// Returns a tuple for packed operand and indexing_map with the assumptions:
/// 1) The generic op is the producer of the pack op.
/// 2) The generic op has only one result.
/// If the operand is a scalar or packing dimensions are all irrelevant to the
/// operand, the operand and the updated indexing map will be returned.
/// Otherwise, it returns the packed operand and the updated indexing map. E.g.,
///
/// #map0 = affine_map<(d0, d1) -> (d0, d1)>
/// #map1 = affine_map<(d0, d1) -> (d0)>
/// #map2 = affine_map<(d0, d1) -> (d1)>
/// %0 = linalg.generic {indexing_maps = [#map1, #map2, #map0],
/// iterator_types = ["parallel", "parallel"]}
/// ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>)
/// outs(%init : tensor<?x?xf32>) {
/// ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):
/// %4 = arith.addf %arg3, %arg4 : f32
/// linalg.yield %4 : f32
/// } -> tensor<?x?xf32>
/// %1 = tensor.pack %0
/// inner_dims_pos = [0, 1]
/// inner_tiles = [8, 2]
/// into %dest : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
///
/// Taking the first input operand as an example, the inner tile size of d1 is
/// 8. Thus, the below operation and `affine_map<(d0, d1, d2, d3)> ->
/// affine_map<(d1, d3)>` will be returned.
///
/// %pack = tensor.pack %arg0
/// inner_dims_pos = [0]
/// inner_tiles = [8]
/// into %init : tensor<?xf32> -> tensor<?x8xf32>
static std::tuple<Value, AffineMap>
getOrCreatePackedViewOfOperand(OpBuilder &b, Location loc, PackInfo packInfo,
GenericOp genericOp, OpOperand *opOperand) {
int64_t numOrigLoops = genericOp.getNumLoops();
int64_t numInnerLoops = packInfo.getNumTiledLoops();
int64_t numLoops = numOrigLoops + numInnerLoops;
AffineMap origIndexingMap = genericOp.getMatchingIndexingMap(opOperand);
llvm::DenseMap<int64_t, int64_t> domainDimToOperandDim;
SmallVector<AffineExpr> exprs(origIndexingMap.getResults());
if (genericOp.isScalar(opOperand))
return std::make_tuple(opOperand->get(),
AffineMap::get(numLoops, 0, exprs, b.getContext()));
// Step 1. Construct the information of packing data dimensions; append inner
// dimensions to the indexing maps for the operand.
for (auto [index, expr] : llvm::enumerate(exprs)) {
int64_t dimPos = expr.cast<AffineDimExpr>().getPosition();
domainDimToOperandDim[dimPos] = index;
}
SmallVector<int64_t> innerDimsPos;
SmallVector<OpFoldResult> innerTileSizes;
for (auto dimPos : packInfo.tiledDimsPos) {
if (!domainDimToOperandDim.count(dimPos))
continue;
int64_t index = domainDimToOperandDim[dimPos];
innerTileSizes.push_back(packInfo.domainDimAndTileMapping[dimPos]);
innerDimsPos.push_back(index);
exprs.push_back(b.getAffineDimExpr(packInfo.tileToPointMapping[dimPos]));
}
// Step 2. Handle outer dim permutations.
SmallVector<int64_t> outerDimsPerm;
if (!packInfo.outerDimsOnDomainPerm.empty()) {
outerDimsPerm = computeOuterDims(packInfo.outerDimsOnDomainPerm, exprs);
// Step 2.1: Fold transpose into the linalg.generic.
SmallVector<int64_t> inversedOuterPerm =
invertPermutationVector(packInfo.outerDimsOnDomainPerm);
for (auto i : llvm::seq<unsigned>(0, origIndexingMap.getNumResults())) {
int64_t dimPos = exprs[i].cast<AffineDimExpr>().getPosition();
exprs[i] = b.getAffineDimExpr(inversedOuterPerm[dimPos]);
}
// Step 2.2: Undo the transposition on `exprs` and propagate the
// transposition on the pack using outerDimsPerm.
if (!outerDimsPerm.empty()) {
SmallVector<AffineExpr> auxVec = exprs;
for (const auto &en : enumerate(outerDimsPerm))
auxVec[en.index()] = exprs[en.value()];
exprs = auxVec;
}
}
auto indexingMap = AffineMap::get(numLoops, 0, exprs, b.getContext());
// The operand does not have dimensions that relates to pack op.
if (innerDimsPos.empty())
return std::make_tuple(opOperand->get(), indexingMap);
auto empty = tensor::PackOp::createDestinationTensor(
b, loc, opOperand->get(), innerTileSizes, innerDimsPos, outerDimsPerm);
auto packedOperand = b.create<tensor::PackOp>(
loc, opOperand->get(), empty, innerDimsPos, innerTileSizes,
/*padding=*/std::nullopt, outerDimsPerm);
return std::make_tuple(packedOperand, indexingMap);
}
/// Bubbles up tensor.pack op through elementwise generic op. This
/// swap pack(generic) to generic(pack). The new generic op works on packed
/// domain; pack ops are created for input and output operands. E.g.,
///
/// #map0 = affine_map<(d0, d1) -> (d0, d1)>
/// %0 = tensor.dim %arg0, %c0 : tensor<?x?xf32>
/// %1 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
/// %2 = tensor.empty(%0, %1) : tensor<?x?xf32>
/// %3 = linalg.generic {indexing_maps = [#map0, #map0],
/// iterator_types = ["parallel", "parallel"]}
/// ins(%arg0 : tensor<?x?xf32>)
/// outs(%2 : tensor<?x?xf32>) {
/// ^bb0(%arg3: f32, %arg4: f32):
/// %4 = arith.addf %arg3, %arg3 : f32
/// linalg.yield %4 : f32
/// } -> tensor<?x?xf32>
/// %4 = tensor.pack %3
/// inner_dims_pos = [0, 1]
/// inner_tiles = [8, 2]
/// into %dest : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
///
/// will be converted to
///
/// #map = affine_map<()[s0] -> (s0 ceildiv 8)>
/// #map1 = affine_map<()[s0] -> (s0 ceildiv 2)>
/// #map2 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
/// %dim = tensor.dim %arg0, %c0 : tensor<?x?xf32>
/// %dim_0 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
/// %0 = affine.apply #map()[%dim]
/// %1 = affine.apply #map1()[%dim_0]
/// %2 = tensor.empty(%0, %1) : tensor<?x?x8x2xf32>
/// %pack = tensor.pack %arg0
/// inner_dims_pos = [0, 1]
/// inner_tiles = [8, 2]
/// into %2 : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
/// %3 = linalg.generic {indexing_maps = [#map2, #map2],
/// iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
/// ins(%pack : tensor<?x?x8x2xf32>)
/// outs(%arg1 : tensor<?x?x8x2xf32>) {
/// ^bb0(%in: f32, %out: f32):
/// %4 = arith.addf %in, %in : f32
/// linalg.yield %4 : f32
/// } -> tensor<?x?x8x2xf32>
static FailureOr<GenericOp>
bubbleUpPackOpThroughElemGenericOp(RewriterBase &rewriter,
tensor::PackOp packOp) {
auto genericOp = packOp.getSource().getDefiningOp<GenericOp>();
if (!genericOp)
return failure();
if (!isElementwise(genericOp))
return failure();
// TODO: Relax the restriction. We are able to bubble up the pack op through
// multi-result generic op. It just needs more work.
if (genericOp.getNumResults() != 1)
return failure();
// TODO: Add an option for allowing padding values. It could introduce
// undefined behavior if we unconditionally propagate pack op through all
// the ops. E.g., if the padding value is zero and there are division ops in
// a generic op. Some values of padding area could be NaN (0/0).
if (packOp.getPaddingValue())
return failure();
OpOperand *opOperand = genericOp.getDpsInitOperand(0);
auto packInfo = getPackingInfoFromConsumer(
genericOp.getMatchingIndexingMap(opOperand), packOp);
Location loc = packOp.getLoc();
SmallVector<Value> inputOperands;
SmallVector<AffineMap> indexingMaps;
for (OpOperand *inputOperand : genericOp.getDpsInputOperands()) {
auto [packedOperand, packedIndexingMap] = getOrCreatePackedViewOfOperand(
rewriter, loc, packInfo, genericOp, inputOperand);
inputOperands.push_back(packedOperand);
indexingMaps.push_back(packedIndexingMap);
}
int64_t numInnerLoops = packInfo.getNumTiledLoops();
SmallVector<utils::IteratorType> iterTypes =
genericOp.getIteratorTypesArray();
iterTypes.append(numInnerLoops, utils::IteratorType::parallel);
// Rebuild the indexing map for the corresponding init operand.
auto [packedOutOperand, packedOutIndexingMap] =
getOrCreatePackedViewOfOperand(rewriter, loc, packInfo, genericOp,
opOperand);
indexingMaps.push_back(packedOutIndexingMap);
// We'll replace the init operand with the destination of pack op if the init
// operand has not users in the body of the linalg.generic (pure elementwise).
// If it has users we need to pack the init operand too and replace the init
// with the packing result.
Value dest = (genericOp.getRegionOutputArgs()[0].use_empty())
? packOp.getDest()
: packedOutOperand;
auto newGenericOp = rewriter.create<linalg::GenericOp>(
loc, dest.getType(), inputOperands, dest, indexingMaps, iterTypes,
/*bodyBuild=*/nullptr, linalg::getPrunedAttributeList(genericOp));
rewriter.cloneRegionBefore(genericOp.getRegion(), newGenericOp.getRegion(),
newGenericOp.getRegion().begin());
return newGenericOp;
}
// Wrapper pattern that applies bubbleUpPackOpThroughElemGenericOp method.
struct BubbleUpPackOpThroughElemGenericOpPattern
: public OpRewritePattern<tensor::PackOp> {
using OpRewritePattern<tensor::PackOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::PackOp packOp,
PatternRewriter &rewriter) const override {
auto genericOp = bubbleUpPackOpThroughElemGenericOp(rewriter, packOp);
if (failed(genericOp))
return failure();
rewriter.replaceOp(packOp, genericOp->getResults());
return success();
}
};
} // namespace
void mlir::linalg::populateDataLayoutPropagationPatterns(
RewritePatternSet &patterns) {
patterns.insert<BubbleUpPackOpThroughElemGenericOpPattern>(
patterns.getContext());
}
|