File: DataLayoutPropagation.cpp

package info (click to toggle)
llvm-toolchain-16 1%3A16.0.6-15~deb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,634,792 kB
  • sloc: cpp: 6,179,261; ansic: 1,216,205; asm: 741,319; python: 196,614; objc: 75,325; f90: 49,640; lisp: 32,396; pascal: 12,286; sh: 9,394; perl: 7,442; ml: 5,494; awk: 3,523; makefile: 2,723; javascript: 1,206; xml: 886; fortran: 581; cs: 573
file content (337 lines) | stat: -rw-r--r-- 14,373 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
//===- DataLayoutPropagation.cpp -----------------------------------------===///
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Linalg/Passes.h"

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/Support/Debug.h"
#include <optional>

namespace mlir {
#define GEN_PASS_DEF_LINALGDATALAYOUTPROPAGATION
#include "mlir/Dialect/Linalg/Passes.h.inc"
} // namespace mlir

using namespace mlir;
using namespace mlir::linalg;

#define DEBUG_TYPE "linalg-data-layout-propagation"

namespace {

// The struct contains the infomation about mapping packing information to
// the iteration domain of Linalg ops.
struct PackInfo {
  int64_t getNumTiledLoops() const { return tileToPointMapping.size(); };
  // InnerDimsPos on iteration domain, which follows the order in pack ops.
  SmallVector<int64_t> tiledDimsPos;
  // The sizes of tiling data dimensions on iteration domain.
  llvm::DenseMap<int64_t, OpFoldResult> domainDimAndTileMapping;
  // The mapping from a dimension of iteration domain to the corresponding inner
  // tiling dimension on iteration domain.
  llvm::DenseMap<int64_t, int64_t> tileToPointMapping;
  // The permutation of outer dims (on domain).
  SmallVector<int64_t> outerDimsOnDomainPerm;
};

static PackInfo getPackingInfoFromConsumer(AffineMap indexingMap,
                                           tensor::PackOp packOp) {
  LLVM_DEBUG(
      { llvm::dbgs() << "--- Construct PackInfo From A Consumer ---\n"; });
  PackInfo packInfo;
  int64_t origNumDims = indexingMap.getNumDims();
  SmallVector<AffineExpr> exprs(indexingMap.getResults());
  ArrayRef<int64_t> innerDimsPos = packOp.getInnerDimsPos();
  for (auto [index, innerDimPos, tileSize] :
       llvm::zip_equal(llvm::seq<unsigned>(0, innerDimsPos.size()),
                       innerDimsPos, packOp.getMixedTiles())) {
    int64_t domainDimPos =
        exprs[innerDimPos].cast<AffineDimExpr>().getPosition();
    packInfo.tiledDimsPos.push_back(domainDimPos);
    packInfo.domainDimAndTileMapping[domainDimPos] = tileSize;
    packInfo.tileToPointMapping[domainDimPos] = origNumDims + index;
    LLVM_DEBUG({
      llvm::dbgs() << "map innerDimPos=" << innerDimPos
                   << " to iteration dimension (d" << domainDimPos << ", d"
                   << packInfo.tileToPointMapping[domainDimPos]
                   << "), which has size=("
                   << packInfo.domainDimAndTileMapping[domainDimPos] << ")\n";
    });
  }

  for (auto dim : packOp.getOuterDimsPerm())
    packInfo.outerDimsOnDomainPerm.push_back(indexingMap.getDimPosition(dim));
  if (!packInfo.outerDimsOnDomainPerm.empty()) {
    LLVM_DEBUG({
      llvm::dbgs() << "map outer dimsDimsPerm to ";
      for (auto dim : packInfo.outerDimsOnDomainPerm)
        llvm::dbgs() << dim << " ";
      llvm::dbgs() << "\n";
    });
  }

  return packInfo;
}

static SmallVector<int64_t> computeOuterDims(ArrayRef<int64_t> perm,
                                             ArrayRef<AffineExpr> exprs) {
  // Compute `outer_dims_perm`. See example:
  // current exprs      : (d0, d1, d2, d3) -> (d2, d3)
  // perm               : [0, 3, 1, 2]
  // First map d2, d3 with their position in the array as:
  // currentPositionTileLoops: dim | pos
  //                           d2  | 0
  //                           d3  | 1
  // then scan `perm` in order and get the `outer_dims_perm`
  // to be used, here it would be [1, 0].
  assert(!perm.empty() && "expect perm not to be empty");
  assert(!exprs.empty() && "expect exprs not to be empty");
  if (exprs.size() == 1)
    return {};
  SmallVector<int64_t> outerDimsPerm;
  DenseMap<int64_t, int64_t> currentPositionTileLoops;
  for (auto [pos, expr] : llvm::enumerate(exprs)) {
    unsigned posInDomain = expr.cast<AffineDimExpr>().getPosition();
    currentPositionTileLoops[posInDomain] = pos;
  }
  for (int64_t loopIdx : perm) {
    if (currentPositionTileLoops.count(loopIdx))
      outerDimsPerm.push_back(currentPositionTileLoops.lookup(loopIdx));
  }
  return outerDimsPerm;
}

/// Returns a tuple for packed operand and indexing_map with the assumptions:
///   1) The generic op is the producer of the pack op.
///   2) The generic op has only one result.
/// If the operand is a scalar or packing dimensions are all irrelevant to the
/// operand, the operand and the updated indexing map will be returned.
/// Otherwise, it returns the packed operand and the updated indexing map. E.g.,
///
///   #map0 = affine_map<(d0, d1) -> (d0, d1)>
///   #map1 = affine_map<(d0, d1) -> (d0)>
///   #map2 = affine_map<(d0, d1) -> (d1)>
///   %0 = linalg.generic {indexing_maps = [#map1, #map2, #map0],
///                        iterator_types = ["parallel", "parallel"]}
///      ins(%arg0, %arg1 : tensor<?xf32>, tensor<?xf32>)
///      outs(%init : tensor<?x?xf32>) {
///    ^bb0(%arg3: f32, %arg4: f32, %arg5: f32):
///      %4 = arith.addf %arg3, %arg4 : f32
///      linalg.yield %4 : f32
///  } -> tensor<?x?xf32>
///  %1 = tensor.pack %0
///    inner_dims_pos = [0, 1]
///    inner_tiles = [8, 2]
///    into %dest : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
///
///  Taking the first input operand as an example, the inner tile size of d1 is
///  8. Thus, the below operation and `affine_map<(d0, d1, d2, d3)> ->
///  affine_map<(d1, d3)>` will be returned.
///
///  %pack = tensor.pack %arg0
///    inner_dims_pos = [0]
///    inner_tiles = [8]
///    into %init : tensor<?xf32> -> tensor<?x8xf32>
static std::tuple<Value, AffineMap>
getOrCreatePackedViewOfOperand(OpBuilder &b, Location loc, PackInfo packInfo,
                               GenericOp genericOp, OpOperand *opOperand) {
  int64_t numOrigLoops = genericOp.getNumLoops();
  int64_t numInnerLoops = packInfo.getNumTiledLoops();
  int64_t numLoops = numOrigLoops + numInnerLoops;
  AffineMap origIndexingMap = genericOp.getMatchingIndexingMap(opOperand);
  llvm::DenseMap<int64_t, int64_t> domainDimToOperandDim;
  SmallVector<AffineExpr> exprs(origIndexingMap.getResults());
  if (genericOp.isScalar(opOperand))
    return std::make_tuple(opOperand->get(),
                           AffineMap::get(numLoops, 0, exprs, b.getContext()));

  // Step 1. Construct the information of packing data dimensions; append inner
  // dimensions to the indexing maps for the operand.
  for (auto [index, expr] : llvm::enumerate(exprs)) {
    int64_t dimPos = expr.cast<AffineDimExpr>().getPosition();
    domainDimToOperandDim[dimPos] = index;
  }
  SmallVector<int64_t> innerDimsPos;
  SmallVector<OpFoldResult> innerTileSizes;
  for (auto dimPos : packInfo.tiledDimsPos) {
    if (!domainDimToOperandDim.count(dimPos))
      continue;
    int64_t index = domainDimToOperandDim[dimPos];
    innerTileSizes.push_back(packInfo.domainDimAndTileMapping[dimPos]);
    innerDimsPos.push_back(index);
    exprs.push_back(b.getAffineDimExpr(packInfo.tileToPointMapping[dimPos]));
  }

  // Step 2. Handle outer dim permutations.
  SmallVector<int64_t> outerDimsPerm;
  if (!packInfo.outerDimsOnDomainPerm.empty()) {
    outerDimsPerm = computeOuterDims(packInfo.outerDimsOnDomainPerm, exprs);

    // Step 2.1: Fold transpose into the linalg.generic.
    SmallVector<int64_t> inversedOuterPerm =
        invertPermutationVector(packInfo.outerDimsOnDomainPerm);
    for (auto i : llvm::seq<unsigned>(0, origIndexingMap.getNumResults())) {
      int64_t dimPos = exprs[i].cast<AffineDimExpr>().getPosition();
      exprs[i] = b.getAffineDimExpr(inversedOuterPerm[dimPos]);
    }
    // Step 2.2: Undo the transposition on `exprs` and propagate the
    // transposition on the pack using outerDimsPerm.
    if (!outerDimsPerm.empty()) {
      SmallVector<AffineExpr> auxVec = exprs;
      for (const auto &en : enumerate(outerDimsPerm))
        auxVec[en.index()] = exprs[en.value()];
      exprs = auxVec;
    }
  }
  auto indexingMap = AffineMap::get(numLoops, 0, exprs, b.getContext());

  // The operand does not have dimensions that relates to pack op.
  if (innerDimsPos.empty())
    return std::make_tuple(opOperand->get(), indexingMap);

  auto empty = tensor::PackOp::createDestinationTensor(
      b, loc, opOperand->get(), innerTileSizes, innerDimsPos, outerDimsPerm);
  auto packedOperand = b.create<tensor::PackOp>(
      loc, opOperand->get(), empty, innerDimsPos, innerTileSizes,
      /*padding=*/std::nullopt, outerDimsPerm);
  return std::make_tuple(packedOperand, indexingMap);
}

/// Bubbles up tensor.pack op through elementwise generic op. This
/// swap pack(generic) to generic(pack). The new generic op works on packed
/// domain; pack ops are created for input and output operands. E.g.,
///
///     #map0 = affine_map<(d0, d1) -> (d0, d1)>
///     %0 = tensor.dim %arg0, %c0 : tensor<?x?xf32>
///     %1 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
///     %2 = tensor.empty(%0, %1) : tensor<?x?xf32>
///     %3 = linalg.generic {indexing_maps = [#map0, #map0],
///                          iterator_types = ["parallel", "parallel"]}
///         ins(%arg0 : tensor<?x?xf32>)
///         outs(%2 : tensor<?x?xf32>) {
///       ^bb0(%arg3: f32, %arg4: f32):
///         %4 = arith.addf %arg3, %arg3 : f32
///         linalg.yield %4 : f32
///     } -> tensor<?x?xf32>
///     %4 = tensor.pack %3
///       inner_dims_pos = [0, 1]
///       inner_tiles = [8, 2]
///       into %dest : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
///
/// will be converted to
///
///     #map = affine_map<()[s0] -> (s0 ceildiv 8)>
///     #map1 = affine_map<()[s0] -> (s0 ceildiv 2)>
///     #map2 = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
///     %dim = tensor.dim %arg0, %c0 : tensor<?x?xf32>
///     %dim_0 = tensor.dim %arg0, %c1 : tensor<?x?xf32>
///     %0 = affine.apply #map()[%dim]
///     %1 = affine.apply #map1()[%dim_0]
///     %2 = tensor.empty(%0, %1) : tensor<?x?x8x2xf32>
///     %pack = tensor.pack %arg0
///       inner_dims_pos = [0, 1]
///       inner_tiles = [8, 2]
///       into %2 : tensor<?x?xf32> -> tensor<?x?x8x2xf32>
///     %3 = linalg.generic {indexing_maps = [#map2, #map2],
///       iterator_types = ["parallel", "parallel", "parallel", "parallel"]}
///       ins(%pack : tensor<?x?x8x2xf32>)
///       outs(%arg1 : tensor<?x?x8x2xf32>) {
///     ^bb0(%in: f32, %out: f32):
///       %4 = arith.addf %in, %in : f32
///       linalg.yield %4 : f32
///     } -> tensor<?x?x8x2xf32>
static FailureOr<GenericOp>
bubbleUpPackOpThroughElemGenericOp(RewriterBase &rewriter,
                                   tensor::PackOp packOp) {
  auto genericOp = packOp.getSource().getDefiningOp<GenericOp>();
  if (!genericOp)
    return failure();

  if (!isElementwise(genericOp))
    return failure();

  // TODO: Relax the restriction. We are able to bubble up the pack op through
  // multi-result generic op. It just needs more work.
  if (genericOp.getNumResults() != 1)
    return failure();

  // TODO: Add an option for allowing padding values. It could introduce
  // undefined behavior if we unconditionally propagate pack op through all
  // the ops. E.g., if the padding value is zero and there are division ops in
  // a generic op. Some values of padding area could be NaN (0/0).
  if (packOp.getPaddingValue())
    return failure();

  OpOperand *opOperand = genericOp.getDpsInitOperand(0);
  auto packInfo = getPackingInfoFromConsumer(
      genericOp.getMatchingIndexingMap(opOperand), packOp);

  Location loc = packOp.getLoc();
  SmallVector<Value> inputOperands;
  SmallVector<AffineMap> indexingMaps;
  for (OpOperand *inputOperand : genericOp.getDpsInputOperands()) {
    auto [packedOperand, packedIndexingMap] = getOrCreatePackedViewOfOperand(
        rewriter, loc, packInfo, genericOp, inputOperand);
    inputOperands.push_back(packedOperand);
    indexingMaps.push_back(packedIndexingMap);
  }

  int64_t numInnerLoops = packInfo.getNumTiledLoops();
  SmallVector<utils::IteratorType> iterTypes =
      genericOp.getIteratorTypesArray();
  iterTypes.append(numInnerLoops, utils::IteratorType::parallel);

  // Rebuild the indexing map for the corresponding init operand.
  auto [packedOutOperand, packedOutIndexingMap] =
      getOrCreatePackedViewOfOperand(rewriter, loc, packInfo, genericOp,
                                     opOperand);
  indexingMaps.push_back(packedOutIndexingMap);

  // We'll replace the init operand with the destination of pack op if the init
  // operand has not users in the body of the linalg.generic (pure elementwise).
  // If it has users we need to pack the init operand too and replace the init
  // with the packing result.
  Value dest = (genericOp.getRegionOutputArgs()[0].use_empty())
                   ? packOp.getDest()
                   : packedOutOperand;
  auto newGenericOp = rewriter.create<linalg::GenericOp>(
      loc, dest.getType(), inputOperands, dest, indexingMaps, iterTypes,
      /*bodyBuild=*/nullptr, linalg::getPrunedAttributeList(genericOp));
  rewriter.cloneRegionBefore(genericOp.getRegion(), newGenericOp.getRegion(),
                             newGenericOp.getRegion().begin());
  return newGenericOp;
}

// Wrapper pattern that applies bubbleUpPackOpThroughElemGenericOp method.
struct BubbleUpPackOpThroughElemGenericOpPattern
    : public OpRewritePattern<tensor::PackOp> {
  using OpRewritePattern<tensor::PackOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(tensor::PackOp packOp,
                                PatternRewriter &rewriter) const override {
    auto genericOp = bubbleUpPackOpThroughElemGenericOp(rewriter, packOp);
    if (failed(genericOp))
      return failure();
    rewriter.replaceOp(packOp, genericOp->getResults());
    return success();
  }
};
} // namespace

void mlir::linalg::populateDataLayoutPropagationPatterns(
    RewritePatternSet &patterns) {
  patterns.insert<BubbleUpPackOpThroughElemGenericOpPattern>(
      patterns.getContext());
}