1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
//===- HoistPadding.cpp - Hoisting for tensor::PadOp ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions concerned with hoisting padding operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Transforms/HoistPadding.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/AsmState.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/Matchers.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Debug.h"
using llvm::dbgs;
#define DEBUG_TYPE "hoist-padding"
#define DBGS() (dbgs() << '[' << DEBUG_TYPE << "] ")
using namespace mlir;
using namespace mlir::linalg;
/// Analysis class to support tensor::PadOp hoisting across multiple enclosing
/// loops. The failure conditions are:
/// 1. Pad op has a use that is not an input of a LinalgOp.
/// 2. Pad op does not have a constant padding value.
/// 3. There is no immediately enclosing scf::ForOp.
/// 4. The backward slice from the pad op to the scf::ForOp to hoist above
/// contains an unknown op with non index type operands, a region, or a
/// memory effect.
/// 5. The backward slice from the pad op to the scf::ForOp to hoist above is
/// empty.
/// 6. The source tensor of pad op is not defined by an extract slice op.
/// 7. The source tensor of the extract slice op is not defined outside of
/// the outermost enclosing scf::ForOp.
/// 8. There is no enclosing scf::ForOp that indexes the padded data.
/// Other cases succeed and will trigger hoisting of the pad op.
struct HoistingAnalysis {
HoistingAnalysis(tensor::PadOp padOp, int numLoops);
bool isValid() { return valid; }
/// Footprint of the packedTensor, computed from the packingLoops.
SmallVector<Value> getPackedTensorSizes(ImplicitLocOpBuilder &b);
/// The outermost loop, determined by `nLevels` above which `padOp` will
/// be hoisted.
scf::ForOp outermostEnclosingForOp;
/// Backward slice rooted at `padOp` and nested under
/// `outermostEnclosingForOp`.
SetVector<Operation *> backwardSlice;
/// The scf::ForOp immediately enclosing `padOp` such that:
/// 1. they are nested under `outermostEnclosingForOp` (inclusive)
/// 2. whose induction variable is used, directly or indirectly, in the
/// computation of `padOp`.
/// The span of these loops determines the footprint of the packed tensor.
SmallVector<scf::ForOp> packingLoops;
private:
/// Drop any non-index dependencies of `padOp` and `sliceOp` from
/// `backwardSlice`. The method follows the use-def chains of the index
/// operands consumed by `padOp` and `sliceOp` and drops the operations
/// not part of this index computation. Afterwards, the filtered
/// `backwardSlice` contains only the loops whose induction variable is used,
/// directly or indirectly, to index the padded tensor. The method returns
/// failure if the filtered backward slice contains an unexpected operation.
///
/// Example:
/// ```
/// %source = linalg.fill(%cst, %arg0)
/// scf.for %i
/// %unrelated = linalg.fill(%cst, %arg1) // not used to index %source!
/// scf.for %j (%arg2 = %unrelated)
/// scf.for %k // not used to index %source!
/// %ubi = affine.min #map(%i)
/// %ubj = affine.min #map(%j)
/// %slice = tensor.extract_slice %source [%i, %j] [%ubi, %ubj]
/// %padded_slice = tensor.pad %slice
/// ```
/// dropNonIndexDependencies(%padded_slice, %slice)
/// removes [scf.for %k, linalg.fill(%cst, %arg1)] from backwardSlice.
LogicalResult dropNonIndexDependencies(tensor::PadOp padOp,
tensor::ExtractSliceOp sliceOp);
/// Encodes whether the analysis is valid and hoisting can proceed.
bool valid;
};
/// Return true if all uses of `padOp` are an input tensor of some
/// LinalgOp.
static bool isOnlyUsedAsInputOfLinalgOp(tensor::PadOp padOp) {
for (OpOperand &use : padOp.getResult().getUses()) {
auto linalgUser = dyn_cast<linalg::LinalgOp>(use.getOwner());
if (!linalgUser || !linalgUser.isDpsInput(&use)) {
LLVM_DEBUG(DBGS() << "Found a use of " << *(padOp)
<< "\nthat is not an input tensor of a LinalgOp, "
<< "cannot hoist\n"
<< *(use.getOwner()) << "\n");
return false;
}
}
return true;
}
/// Return at most nLevels of immediately enclosing scf::ForOp loops.
/// Stops at the first parent that is not an scf::ForOp.
/// Multi-loops such as scf.parallel or linalg.tiled_loop are not modeled atm.
/// Control-flow and other containing ops with regions are not modeled atm.
static void
getAtMostNEnclosingLoops(tensor::PadOp padOp, int nLevels,
SmallVector<scf::ForOp> &reverseEnclosingLoops) {
AsmState state(padOp->getParentOfType<func::FuncOp>());
(void)state;
scf::ForOp outermostEnclosingForOp = nullptr;
Operation *nextEnclosingOp = padOp->getParentOp();
while (nLevels-- > 0 &&
(outermostEnclosingForOp = dyn_cast<scf::ForOp>(nextEnclosingOp))) {
LLVM_DEBUG(
DBGS() << "loops: ";
outermostEnclosingForOp.getInductionVar().printAsOperand(dbgs(), state);
dbgs() << "\n");
reverseEnclosingLoops.push_back(outermostEnclosingForOp);
nextEnclosingOp = outermostEnclosingForOp->getParentOp();
}
}
/// Returns the transposed `rankedTensorType` if `transposeVector` is non-empty.
/// Fail if `transposeVector` is no permutation matching the tensor rank.
static FailureOr<RankedTensorType>
computeTransposedType(RankedTensorType rankedTensorType,
ArrayRef<int64_t> transposeVector) {
if (transposeVector.empty())
return rankedTensorType;
if (!isPermutationVector(transposeVector) ||
transposeVector.size() != static_cast<size_t>(rankedTensorType.getRank()))
return failure();
SmallVector<int64_t> transposedShape(rankedTensorType.getShape().begin(),
rankedTensorType.getShape().end());
applyPermutationToVector(transposedShape, transposeVector);
using RTTBuilder = RankedTensorType::Builder;
RankedTensorType transposedTensorType =
RTTBuilder(rankedTensorType).setShape(transposedShape);
return transposedTensorType;
}
HoistingAnalysis::HoistingAnalysis(tensor::PadOp padOp, int numLoops) {
valid = false;
// Bail on any use that isn't an input of a LinalgOp.
// Hoisting of inplace updates happens after vectorization.
if (!isOnlyUsedAsInputOfLinalgOp(padOp))
return;
// Get at most `numLoops` of immediately enclosing loops.
SmallVector<scf::ForOp> reverseEnclosingLoops;
getAtMostNEnclosingLoops(padOp, numLoops, reverseEnclosingLoops);
if (reverseEnclosingLoops.empty()) {
LLVM_DEBUG(DBGS() << "No immediately enclosing loop -> skip\n");
return;
}
outermostEnclosingForOp = reverseEnclosingLoops.back();
// Get the `sliceOp` that defines the source tensor of `padOp` and
// check its source is defined outside of the outermost loop. This check
// ensures the padded data is available for packing before entering the
// outermost enclosing loop.
//
// Example:
// ```
// %source = linalg.fill(%cst, %arg0)
// // %source is available for packing here!
// scf.for %i
// scf.for %j
// scf.for %k
// %slice = tensor.extract_slice %source [%i, %j]
// %padded_slice = tensor.pad %slice
// ```
auto sliceOp = padOp.getSource().getDefiningOp<tensor::ExtractSliceOp>();
if (!sliceOp) {
LLVM_DEBUG(DBGS() << "Cannot find the extract slice op -> skip\n");
return;
}
if (!outermostEnclosingForOp.isDefinedOutsideOfLoop(sliceOp.getSource())) {
LLVM_DEBUG(DBGS() << "Source not defined outside of loops -> skip\n");
return;
}
// Check the region of `padOp` depends on a constant only. Adding
// hoisting support for arbitrary padding regions would require cloning all
// dependencies captured by the padding region.
Value paddingValue = padOp.getConstantPaddingValue();
if (!paddingValue ||
!isa_and_nonnull<arith::ConstantOp>(paddingValue.getDefiningOp())) {
LLVM_DEBUG(DBGS() << "Cannot find constant padding value -> skip\n");
return;
}
// Get all the ops in the backwards slice starting from `padOp` and that
// are dominated by the outermost enclosing loop.
DominanceInfo domInfo(outermostEnclosingForOp);
getBackwardSlice(padOp.getOperation(), &backwardSlice, [&](Operation *op) {
return domInfo.dominates(outermostEnclosingForOp, op);
});
if (backwardSlice.empty())
return;
// Add `padOp` itself to the backward slice.
backwardSlice.insert(padOp.getOperation());
// Remove all ops in the backward slice that are not used to index the padded
// tensor. In particular, keep `padOp`, `sliceOp`, and the loop and
// affine operations used for the index computation.
if (failed(dropNonIndexDependencies(padOp, sliceOp)))
return;
// Add only the loops part of the filtered `backwardSlice` to the packing
// loops. All other loops are not used to index the padded data and
// consequently access the same data in every loop iteration. Adding them to
// the packing loops would increase the cache footprint of the packed data
// by storing the same data multiple times.
for (scf::ForOp forOp : llvm::reverse(reverseEnclosingLoops))
if (backwardSlice.contains(forOp))
packingLoops.push_back(forOp);
if (packingLoops.empty()) {
LLVM_DEBUG(DBGS() << "Cannot find a packing loop -> skip\n");
return;
}
// The analysis is valid and hoisting can occur.
valid = true;
}
LogicalResult
HoistingAnalysis::dropNonIndexDependencies(tensor::PadOp padOp,
tensor::ExtractSliceOp sliceOp) {
// Set of all values used for index computation.
SetVector<Value> indexEdges;
// Add all index operands of `operation` to `indexEdges`. An index operand is
// an operand of type index.
auto addIndexOperandsToIndexEdges = [&](Operation *operation) {
for (Value operand : operation->getOperands())
if (operand.getType().isIndex())
indexEdges.insert(operand);
};
// Check if any operation result is contained in `indexEdges`.
auto hasIndexResult = [&](Operation *operation) {
return llvm::any_of(operation->getResults(), [&](Value result) {
return indexEdges.contains(result);
});
};
// Starting from `padOp` and `sliceOp` walk the use-def edges of index
// type in `backwardSlice`. Add the index operands of an operation to
// `indexEdges` and remove all operations from `backwardSlice` that are not
// part of the index computation.
//
// Example:
// ```
// %source = linalg.fill(%cst, %arg0)
// scf.for %i
// %unrelated = linalg.fill(%cst, %arg1) // not used to index %source!
// scf.for %j (%arg2 = %unrelated)
// scf.for %k // not used to index %source!
// %ubi = affine.min #map(%i)
// %ubj = affine.min #map(%j)
// %slice = tensor.extract_slice %source [%i, %j] [%ubi, %ubj]
// %padded_slice = tensor.pad %slice
// ```
// After iterating `backwardSlice` we obtain:
// indexEdges = [%i, %j, %ubi, %ubj]
// backwardSlice = backwardSlice / [linalg.fill(%cst, %arg1), scf.for %k]
SetVector<Operation *> operationsToRemove;
for (Operation *op : llvm::reverse(backwardSlice)) {
// Add the index operands of `padOp` and `sliceOp` to start the
// exploration of the index computation.
if (op == padOp || op == sliceOp) {
addIndexOperandsToIndexEdges(op);
continue;
}
// Add the index operands of the loop if its induction variable is
// used for index computation.
if (auto forOp = dyn_cast<scf::ForOp>(op)) {
if (!hasIndexResult(op) && indexEdges.contains(forOp.getInductionVar())) {
addIndexOperandsToIndexEdges(op);
continue;
}
}
// Add the index operands of all other operations if at least one result is
// used for index computation.
if (hasIndexResult(op)) {
addIndexOperandsToIndexEdges(op);
// Check the operands of the remaining operations all have index type.
if (llvm::any_of(op->getOperandTypes(),
[](Type type) { return !type.isIndex(); })) {
LLVM_DEBUG(DBGS() << "Unsupported op with non index type operands: "
<< op << " -> skip\n");
return failure();
}
// Check the remaining operations do not have regions or memory effects.
auto effectInterface = dyn_cast<MemoryEffectOpInterface>(op);
bool hasMemoryEffect = effectInterface && !effectInterface.hasNoEffect();
if (hasMemoryEffect || op->getNumRegions() != 0) {
LLVM_DEBUG(DBGS() << "Unsupported op with region or memory effect: "
<< op << " -> skip\n");
return failure();
}
continue;
}
// Remove all other operations not used by the index computation. An
// exception are constant operations that may be used by `padOp`.
if (!isa<arith::ConstantOp>(op))
operationsToRemove.insert(op);
}
backwardSlice.set_subtract(operationsToRemove);
return success();
}
SmallVector<Value>
HoistingAnalysis::getPackedTensorSizes(ImplicitLocOpBuilder &b) {
SmallVector<Value> dynamicTensorSizes;
// Upper bound the packing loop lengths to size the packed tensor. Taking
// upper bounds can make the sizes of the packed tensor independent of the
// enclosing loops. This independence is a prerequisite for reusing the same
// buffer for all enclosing loop iterations and hoisting its allocation out of
// the enclosing loops.
for (auto forOp : packingLoops) {
// Compute an upper bound `ubVal` for the upper bound of `forOp`.
AffineMap boundMap;
SmallVector<Value> boundOperands;
getUpperBoundForIndex(forOp.getUpperBound(), boundMap, boundOperands);
Value ubVal = b.createOrFold<AffineMinOp>(boundMap, boundOperands);
// Compute the maximal packing loop length as (ub - lb).ceilDiv(step) and
// store the result to `dynamicTensorSizes`.
// TODO: instead of using the lower bound of `forOp` directly, implement a
// lower bound computation similar to the upper bound computation.
AffineExpr lb, ub, step;
bindDims(b.getContext(), lb, ub);
bindSymbols(b.getContext(), step);
Value res = b.createOrFold<AffineApplyOp>(
(ub - lb).ceilDiv(step), ValueRange{forOp.getLowerBound(), ubVal,
cast<scf::ForOp>(forOp).getStep()});
dynamicTensorSizes.push_back(res);
}
return dynamicTensorSizes;
}
static bool isDefinedOutsideOrConstant(scf::ForOp outer, Value v) {
return outer.isDefinedOutsideOfLoop(v) || matchPattern(v, m_Constant());
}
/// Return the current iteration number in the loop (iv - lb).ceilDiv(step).
/// The returned Value is guaranteed not to depend on any loop comprised in
/// [`outer`, `forOp`].
/// Return null if such a loop-independent quantity cannot be computed.
static Value buildLoopIterationCount(OpBuilder &b, scf::ForOp outer,
scf::ForOp forOp) {
MLIRContext *ctx = forOp->getContext();
AffineExpr iv, lb, step;
bindDims(ctx, iv, lb);
bindSymbols(ctx, step);
if (!isDefinedOutsideOrConstant(outer, forOp.getLowerBound()) ||
!isDefinedOutsideOrConstant(outer, forOp.getStep()))
return Value();
Value ivVal = forOp.getInductionVar(), lbVal = forOp.getLowerBound(),
stepVal = forOp.getStep();
auto loc = forOp->getLoc();
return b.createOrFold<AffineApplyOp>(loc, (iv - lb).ceilDiv(step),
ValueRange{ivVal, lbVal, stepVal});
}
FailureOr<Value> mlir::linalg::hoistPaddingOnTensors(
tensor::PadOp opToHoist, int numLoops, ArrayRef<int64_t> transposeVector,
tensor::PadOp &hoistedOp, SmallVectorImpl<GenericOp> &transposeOps) {
LLVM_DEBUG(DBGS() << "Try to hoist " << *(opToHoist) << " by " << numLoops
<< " loops\n");
HoistingAnalysis analysis(opToHoist, numLoops);
if (!analysis.isValid()) {
LLVM_DEBUG(DBGS() << "Analysis failed -> Skip\n");
return failure();
}
scf::ForOp outer = analysis.outermostEnclosingForOp;
ImplicitLocOpBuilder b(outer->getLoc(), outer);
SmallVector<Value> dynamicTensorSizes = analysis.getPackedTensorSizes(b);
// Update actual number of loops, which may be smaller.
int nPackedLoops = analysis.packingLoops.size();
Location loc = opToHoist->getLoc();
RankedTensorType paddedTensorType = opToHoist.getResultType();
int paddedRank = paddedTensorType.getRank();
// Compute the type of the transposed padded tensor.
FailureOr<RankedTensorType> transposedTensorType =
computeTransposedType(paddedTensorType, transposeVector);
if (failed(transposedTensorType))
return failure();
// Create the packed tensor<?x?x..?xtransposedShape> into which we amortize
// padding.
SmallVector<int64_t> packedShape(nPackedLoops, ShapedType::kDynamic);
// TODO: go grab dims when necessary, for now tensor::PadOp returns a static
// tensor.
llvm::append_range(packedShape, transposedTensorType->getShape());
auto packedTensorType = RankedTensorType::get(
packedShape, transposedTensorType->getElementType());
Value packedTensor = b.create<tensor::EmptyOp>(
loc, packedTensorType.getShape(), packedTensorType.getElementType(),
dynamicTensorSizes);
// Clone the operations involved in the backward slice, iteratively stepping
// into the loops that we encounter.
// The implementation proceeds in a stack-like fashion:
// 1. Iteratively clone and step into the loops, pushing the `packedTensor`
// deeper in the stack.
// 2. Create a GenericOp if `transposeVector` is non-empty.
// 3. Create a InsertSliceOp at the top of the stack.
// 4. Iteratively pop and yield the result of the InsertSliceOp across
// the cloned loops.
SmallVector<Value> clonedLoopIvs, leadingPackedTensorIndexings;
clonedLoopIvs.reserve(nPackedLoops);
leadingPackedTensorIndexings.reserve(nPackedLoops);
IRMapping bvm;
// Stack step 1. iteratively clone loops and push `packedTensor`.
for (Operation *op : analysis.backwardSlice) {
// Specifically sit out in the extract_slice(packedTensor) case: this is the
// piece we seek to replace.
if (auto sliceOp = dyn_cast<tensor::ExtractSliceOp>(op))
if (bvm.lookupOrDefault(sliceOp.getSource()) == packedTensor)
continue;
// Clone all operations except it is a loop.
auto forOp = dyn_cast<scf::ForOp>(op);
if (!forOp) {
b.clone(*op, bvm);
continue;
}
// Create a packing loop that takes `packedTensor` as iteration argument.
auto clonedForOp = b.create<scf::ForOp>(
loc, bvm.lookupOrDefault(forOp.getLowerBound()),
bvm.lookupOrDefault(forOp.getUpperBound()),
bvm.lookupOrDefault(forOp.getStep()), packedTensor);
// Map the induction var, region args and results to the `clonedForOp`.
bvm.map(forOp.getInductionVar(), clonedForOp.getInductionVar());
bvm.map(forOp.getRegionIterArgs(), clonedForOp.getRegionIterArgs());
bvm.map(forOp.getResults(), clonedForOp.getResults());
assert(clonedForOp->getNumRegions() == 1);
clonedLoopIvs.push_back(clonedForOp.getInductionVar());
b.setInsertionPointToStart(&clonedForOp->getRegion(0).front());
Value loopIndependentIterationCount =
buildLoopIterationCount(b, outer, clonedForOp);
// Assert the loop-independent iteration count can be computed.
if (!loopIndependentIterationCount)
llvm_unreachable("loop independence prerequisite not met");
leadingPackedTensorIndexings.push_back(loopIndependentIterationCount);
packedTensor = clonedForOp.getRegionIterArgs().front();
}
// offsets = [clonedLoopIvs, 0 .. 0].
SmallVector<OpFoldResult> offsets(leadingPackedTensorIndexings.begin(),
leadingPackedTensorIndexings.end());
offsets.append(paddedRank, b.getIndexAttr(0));
// sizes = [1 .. 1, transposedShape].
SmallVector<OpFoldResult> sizes(nPackedLoops, b.getIndexAttr(1));
for (int64_t sz : transposedTensorType->getShape()) {
// TODO: go grab dims when necessary, for now tensor::PadOp returns a static
assert(!ShapedType::isDynamic(sz) && "padded tensor needs static sizes");
sizes.push_back(b.getIndexAttr(sz));
}
// strides = [1 .. 1].
SmallVector<OpFoldResult> strides(nPackedLoops + paddedRank,
b.getIndexAttr(1));
// Stack step 2. create GenericOp if `transposeVector` is non-empty.
Value paddedTensor = bvm.lookup(opToHoist.getResult());
if (!transposeVector.empty()) {
Value outputTensor = b.create<tensor::ExtractSliceOp>(
loc, *transposedTensorType, packedTensor, offsets, sizes, strides);
transposeOps.push_back(
makeTransposeOp(b, loc, paddedTensor, outputTensor, transposeVector));
paddedTensor = transposeOps.back()->getResult(0);
}
// Stack step 3. create InsertSliceOp at the top of the stack.
Value inserted = b.create<tensor::InsertSliceOp>(
loc, paddedTensor, packedTensor, offsets, sizes, strides);
// Stack step 4. iteratively pop the stack and propagate the yield.
Value valueToYield = inserted;
for (Value iv : llvm::reverse(clonedLoopIvs)) {
auto forOp = scf::getForInductionVarOwner(iv);
b.setInsertionPointToEnd(&forOp.getRegion().front());
b.create<scf::YieldOp>(loc, valueToYield);
valueToYield = forOp.getResult(0);
}
// Now the packed tensor is ready, replace the original padding op by a
// 1x..x1 slice [originalLoopIvs, 0 .. 0][1 .. 1, paddedShape][1 .. 1].
b.setInsertionPoint(opToHoist);
SmallVector<Value> loopIterationCounts = llvm::to_vector<4>(
llvm::map_range(analysis.packingLoops, [&](Operation *loop) {
return buildLoopIterationCount(b, outer, cast<scf::ForOp>(loop));
}));
// Assert all loop iteration counts can be computed.
if (llvm::any_of(loopIterationCounts, [](Value v) { return !v; }))
llvm_unreachable("loop independence prerequisite not met");
// offsets = [originalLoopIvs, 0 .. 0].
offsets.assign(loopIterationCounts.begin(), loopIterationCounts.end());
offsets.append(paddedRank, b.getIndexAttr(0));
// sizes = [1 .. 1, transposedShape] (definedabove).
// strides = [1 .. 1] (defined above)
packedTensor =
scf::getForInductionVarOwner(clonedLoopIvs.front())->getResult(0);
Value newResult = b.create<tensor::ExtractSliceOp>(
loc, *transposedTensorType, packedTensor, offsets, sizes, strides);
// Transpose the packed tensor back to the original storage order.
if (!transposeVector.empty()) {
Value emptyTensor = b.create<tensor::EmptyOp>(
loc, paddedTensorType.getShape(), paddedTensorType.getElementType());
transposeOps.push_back(
makeTransposeOp(b, loc, newResult, emptyTensor, transposeVector));
newResult = transposeOps.back()->getResult(0);
}
// Make the newly cloned `opToHoist` available to the caller.
hoistedOp =
cast<tensor::PadOp>(bvm.lookup(opToHoist.getResult()).getDefiningOp());
return newResult;
}
|