File: Hoisting.cpp

package info (click to toggle)
llvm-toolchain-16 1%3A16.0.6-15~deb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,634,792 kB
  • sloc: cpp: 6,179,261; ansic: 1,216,205; asm: 741,319; python: 196,614; objc: 75,325; f90: 49,640; lisp: 32,396; pascal: 12,286; sh: 9,394; perl: 7,442; ml: 5,494; awk: 3,523; makefile: 2,723; javascript: 1,206; xml: 886; fortran: 581; cs: 573
file content (558 lines) | stat: -rw-r--r-- 23,855 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
//===- Hoisting.cpp - Linalg hoisting transformations ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions concerned with hoisting invariant operations
// in the context of Linalg transformations.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Linalg/Transforms/Hoisting.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/Affine/Utils.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Dominance.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/LoopInvariantCodeMotionUtils.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"

using llvm::dbgs;

#define DEBUG_TYPE "linalg-hoisting"

#define DBGS() (dbgs() << '[' << DEBUG_TYPE << "] ")

using namespace mlir;
using namespace mlir::linalg;

namespace {
/// Represents a unit of hoistable TransferWriteOp. This may comprise other
/// instructions that need to be hoisted too.
struct HoistableWrite {
  vector::TransferWriteOp transferWriteOp;
  tensor::InsertSliceOp insertSliceOp;
};
/// Represents a unit of hoistable TransferReadOp. This may comprise other
/// instructions that need to be hoisted too.
struct HoistableRead {
  vector::TransferReadOp transferReadOp;
  tensor::ExtractSliceOp extractSliceOp;
};
} // namespace

/// Return true if op1 and op2 are the same constant or the same SSA value.
static bool isEqualOffsetSizeOrStride(OpFoldResult op1, OpFoldResult op2) {
  auto getConstantIntValue = [](OpFoldResult ofr) -> std::optional<int64_t> {
    Attribute attr = ofr.dyn_cast<Attribute>();
    // Note: isa+cast-like pattern allows writing the condition below as 1 line.
    if (!attr && ofr.get<Value>().getDefiningOp<arith::ConstantOp>())
      attr = ofr.get<Value>().getDefiningOp<arith::ConstantOp>().getValue();
    if (auto intAttr = attr.dyn_cast_or_null<IntegerAttr>())
      return intAttr.getValue().getSExtValue();
    return std::nullopt;
  };
  auto cst1 = getConstantIntValue(op1), cst2 = getConstantIntValue(op2);
  if (cst1 && cst2 && *cst1 == *cst2)
    return true;
  auto v1 = op1.dyn_cast<Value>(), v2 = op2.dyn_cast<Value>();
  return v1 && v2 && v1 == v2;
}

/// Return true is all offsets, sizes and strides are equal.
static bool sameOffsetsSizesAndStrides(tensor::ExtractSliceOp s,
                                       tensor::InsertSliceOp si) {
  if (s.getStaticOffsets().size() != si.getStaticOffsets().size())
    return false;
  if (s.getStaticSizes().size() != si.getStaticSizes().size())
    return false;
  if (s.getStaticStrides().size() != si.getStaticStrides().size())
    return false;
  for (auto it : llvm::zip(s.getMixedOffsets(), si.getMixedOffsets()))
    if (!isEqualOffsetSizeOrStride(std::get<0>(it), std::get<1>(it)))
      return false;
  for (auto it : llvm::zip(s.getMixedSizes(), si.getMixedSizes()))
    if (!isEqualOffsetSizeOrStride(std::get<0>(it), std::get<1>(it)))
      return false;
  for (auto it : llvm::zip(s.getMixedStrides(), si.getMixedStrides()))
    if (!isEqualOffsetSizeOrStride(std::get<0>(it), std::get<1>(it)))
      return false;
  return true;
}

/// Look for a HoistableRead, in the given tensor uses, accessing the same
/// offset as the HoistableWrite.
static HoistableRead findMatchingTransferRead(HoistableWrite write,
                                              Value srcTensor) {
  assert(write.transferWriteOp &&
         "expected hoistable write to have a .transfer_write");

  LLVM_DEBUG(DBGS() << "findMatchingTransferRead for: "
                    << *write.transferWriteOp.getOperation() << "\n");
  if (write.insertSliceOp)
    LLVM_DEBUG(DBGS() << "findMatchingTransferRead inserSliceOp: "
                      << *write.insertSliceOp.getOperation() << "\n");
  SmallVector<Operation *> users(srcTensor.getUsers().begin(),
                                 srcTensor.getUsers().end());
  while (!users.empty()) {
    Operation *user = users.pop_back_val();
    LLVM_DEBUG(DBGS() << "findMatchingTransferRead inspect user: " << *user
                      << "\n");

    // If HoistableWrite involves a InsertSliceOp, we need to find a
    // matching ExtractSliceOp.
    tensor::ExtractSliceOp sliceOp;
    Operation *maybeTransferReadUser = user;
    if (write.insertSliceOp) {
      sliceOp = dyn_cast<tensor::ExtractSliceOp>(user);
      if (!sliceOp || sliceOp.getResult().getType() !=
                          write.insertSliceOp.getSource().getType())
        continue;

      LLVM_DEBUG(DBGS() << "check whether sameOffsetsSizesAndStrides: "
                        << *sliceOp << " vs " << *write.insertSliceOp << "\n");
      if (!sameOffsetsSizesAndStrides(sliceOp, write.insertSliceOp))
        continue;

      LLVM_DEBUG(DBGS() << "sameOffsetsSizesAndStrides: SUCCESS\n");
      // If we got here, sliceOp is hoistable iff it has exactly 2 uses:
      //   1. the transfer_write we want to hoist.
      //   2. a matching transfer_read.
      // Anything else, we skip.
      bool skip = false;
      Operation *otherUser = nullptr;
      for (Operation *u : sliceOp->getUsers()) {
        if (u == write.transferWriteOp)
          continue;
        if (otherUser) {
          skip = true;
          break;
        }
        otherUser = u;
      }
      if (skip || !otherUser)
        continue;
      maybeTransferReadUser = otherUser;
    }

    LLVM_DEBUG(DBGS() << "maybeTransferReadUser: " << *maybeTransferReadUser
                      << "\n");
    auto read = dyn_cast<vector::TransferReadOp>(maybeTransferReadUser);
    if (read && read.getIndices() == write.transferWriteOp.getIndices() &&
        read.getVectorType() == write.transferWriteOp.getVectorType())
      return HoistableRead{read, sliceOp};

    if (isa<vector::TransferWriteOp>(user)) {
      // If we find a write with disjoint indices recurse through its uses.
      if (vector::isDisjointTransferIndices(
              cast<VectorTransferOpInterface>(user),
              cast<VectorTransferOpInterface>(
                  write.transferWriteOp.getOperation()))) {
        users.append(user->getUsers().begin(), user->getUsers().end());
      }
    }
  }
  return HoistableRead();
}

/// Check if the chunk of data inserted by the HoistableWrite are read by any
/// other op than the HoistableRead candidate.
static bool tensorChunkAccessedByUnknownOp(HoistableWrite write,
                                           HoistableRead candidateRead,
                                           BlockArgument tensorArg) {
  // Make sure none of the other uses read the part of the tensor modified
  // by the transfer_write.
  llvm::SmallVector<Value::use_range, 1> uses;
  uses.push_back(tensorArg.getUses());
  while (!uses.empty()) {
    for (OpOperand &use : uses.pop_back_val()) {
      Operation *user = use.getOwner();
      // Skip the candidate use, only inspect the "other" uses.
      if (user == candidateRead.transferReadOp ||
          user == candidateRead.extractSliceOp ||
          user == write.transferWriteOp || user == write.insertSliceOp)
        continue;
      // Consider all transitive uses through a extract_slice / insert_slice.
      // TODO: atm we just bail because a stronger analysis is needed for these
      // cases.
      if (isa<tensor::ExtractSliceOp, tensor::InsertSliceOp>(user))
        return true;
      // Consider all transitive uses through a vector.transfer_write.
      if (auto writeUser = dyn_cast<vector::TransferWriteOp>(user)) {
        uses.push_back(writeUser->getResult(0).getUses());
        continue;
      }
      // Consider all nested uses through an scf::ForOp. We may have
      // pass-through tensor arguments left from previous level of
      // hoisting.
      if (auto forUser = dyn_cast<scf::ForOp>(user)) {
        Value arg = forUser.getLoopBody().getArgument(
            use.getOperandNumber() - forUser.getNumControlOperands() +
            /*iv value*/ 1);
        uses.push_back(arg.getUses());
        continue;
      }
      // Follow the use yield as long as it doesn't escape the original
      // region.
      scf::YieldOp yieldUser = dyn_cast<scf::YieldOp>(user);
      if (yieldUser && write.transferWriteOp->getParentOp()->isAncestor(
                           yieldUser->getParentOp())) {
        Value ret = yieldUser->getParentOp()->getResult(use.getOperandNumber());
        uses.push_back(ret.getUses());
        continue;
      }
      auto read = dyn_cast<vector::TransferReadOp>(user);
      if (!read || !vector::isDisjointTransferIndices(
                       cast<VectorTransferOpInterface>(read.getOperation()),
                       cast<VectorTransferOpInterface>(
                           write.transferWriteOp.getOperation()))) {
        return true;
      }
    }
  }
  return false;
}

/// Return the `forOp`-invariant HoistableWrite that produces `yieldOperand`.
/// Return the null HoistableWrite() if it is not comprised of a
/// vector.transfer_write + optional insert_slice or if any of the indexings
/// is `forOp`-dependent.
static HoistableWrite
getLoopInvariantTransferWriteOpDefining(scf::ForOp forOp,
                                        OpOperand &yieldOperand) {
  Value v = yieldOperand.get();
  if (auto write = v.getDefiningOp<vector::TransferWriteOp>()) {
    // Indexing must not depend on `forOp`.
    for (Value operand : write.getIndices())
      if (!forOp.isDefinedOutsideOfLoop(operand))
        return HoistableWrite();

    return HoistableWrite{write, nullptr};
  }

  if (auto insertSliceOp = v.getDefiningOp<tensor::InsertSliceOp>()) {
    // Inserted slice must come from vector.transfer_write.
    auto write =
        insertSliceOp.getSource().getDefiningOp<vector::TransferWriteOp>();
    if (!write)
      return HoistableWrite();

    // Tensor inserted into must be a BBArg at position matching yieldOperand's.
    auto bbArg = insertSliceOp.getDest().dyn_cast<BlockArgument>();
    if (!bbArg || bbArg.getOwner()->getParentOp() != forOp ||
        bbArg.getArgNumber() != /*num iv=*/1 + yieldOperand.getOperandNumber())
      return HoistableWrite();

    // Indexing inserted into must not depend on `forOp`.
    for (Value operand : insertSliceOp->getOperands().drop_front(
             tensor::InsertSliceOp::getOffsetSizeAndStrideStartOperandIndex()))
      if (!forOp.isDefinedOutsideOfLoop(operand))
        return HoistableWrite();

    return HoistableWrite{write, insertSliceOp};
  }

  return HoistableWrite();
}

/// Mechanical hoisting of a matching HoistableRead / HoistableWrite pair.
static void hoistReadWrite(HoistableRead read, HoistableWrite write,
                           BlockArgument tensorBBArg) {
  scf::ForOp forOp = cast<scf::ForOp>(tensorBBArg.getOwner()->getParentOp());
  assert(read.transferReadOp && write.transferWriteOp &&
         "expected transfer_read and transfer_write ops to be set");
  assert(((read.extractSliceOp && write.insertSliceOp) ||
          (!read.extractSliceOp && !write.insertSliceOp)) &&
         "expected matching extract_slice / insert_slice");
  LLVM_DEBUG(DBGS() << "In forOp:\n"
                    << *forOp.getOperation()
                    << "\nHoist: " << *read.transferReadOp.getOperation()
                    << "\nHoist: " << *write.transferWriteOp.getOperation()
                    << "\nInvolving: " << tensorBBArg << "\n");

  // If a read slice is present, hoist it.
  if (read.extractSliceOp)
    forOp.moveOutOfLoop(read.extractSliceOp);

  // Hoist the transfer_read op.
  forOp.moveOutOfLoop(read.transferReadOp);

  // TODO: don't hardcode /*numIvs=*/1.
  assert(tensorBBArg.getArgNumber() >= /*numIvs=*/1);
  unsigned initArgNumber = tensorBBArg.getArgNumber() - /*numIvs=*/1;

  // Update the source tensor.
  if (read.extractSliceOp)
    read.extractSliceOp.getSourceMutable().assign(
        forOp.getInitArgs()[initArgNumber]);
  else
    read.transferReadOp.getSourceMutable().assign(
        forOp.getInitArgs()[initArgNumber]);

  // Hoist write after.
  if (write.insertSliceOp)
    write.insertSliceOp->moveAfter(forOp);
  write.transferWriteOp->moveAfter(forOp);

  // Update the yield.
  auto yieldOp = cast<scf::YieldOp>(forOp.getRegion().front().getTerminator());
  if (write.insertSliceOp)
    yieldOp->setOperand(initArgNumber, write.insertSliceOp.getDest());
  else
    yieldOp->setOperand(initArgNumber, write.transferWriteOp.getSource());

  // Rewrite `loop` with additional new yields.
  OpBuilder b(read.transferReadOp);
  NewYieldValueFn yieldFn = [&](OpBuilder &b, Location loc,
                                ArrayRef<BlockArgument> newBBArgs) {
    return SmallVector<Value>{write.transferWriteOp.getVector()};
  };
  auto newForOp = replaceLoopWithNewYields(
      b, forOp, read.transferReadOp.getVector(), yieldFn);

  // Transfer write has been hoisted, need to update the vector and tensor
  // source. Replace the result of the loop to use the new tensor created
  // outside the loop.
  // Depending on whether a insert_slice is present or not, it carries the
  // update on the tensor operands.
  if (write.insertSliceOp) {
    newForOp.getResult(initArgNumber)
        .replaceAllUsesWith(write.insertSliceOp.getResult());
    write.transferWriteOp.getSourceMutable().assign(
        read.extractSliceOp.getResult());
    write.insertSliceOp.getDestMutable().assign(
        read.extractSliceOp.getSource());
  } else {
    newForOp.getResult(initArgNumber)
        .replaceAllUsesWith(write.transferWriteOp.getResult());
    write.transferWriteOp.getSourceMutable().assign(
        newForOp.getResult(initArgNumber));
  }

  // Always update with the newly yield tensor and vector.
  write.transferWriteOp.getVectorMutable().assign(newForOp.getResults().back());
}

// To hoist transfer op on tensor the logic can be significantly simplified
// compared to the case on buffer. The transformation follows this logic:
// 1. Look for transfer_write with a single use from ForOp yield
// 2. Check the uses of the matching block argument and look for a transfer_read
// with the same indices.
// 3. Check that all the other uses of the tensor argument are either disjoint
// tensor_read or transfer_write. For transfer_write uses recurse to make sure
// the new tensor has the same restrictions on its uses.
// 4. Hoist the tensor_read/tensor_write and update the tensor SSA links.
// After this transformation the scf.forOp may have unused arguments that can be
// remove by the canonicalization pass.
void mlir::linalg::hoistRedundantVectorTransfersOnTensor(func::FuncOp func) {
  bool changed = true;
  while (changed) {
    changed = false;
    func.walk([&](scf::ForOp forOp) {
      Operation *yield = forOp.getBody()->getTerminator();
      for (const auto &it : llvm::enumerate(forOp.getRegionIterArgs())) {
        OpOperand &ret = yield->getOpOperand(it.index());
        HoistableWrite write =
            getLoopInvariantTransferWriteOpDefining(forOp, ret);
        if (!write.transferWriteOp || !write.transferWriteOp->hasOneUse())
          continue;
        LLVM_DEBUG(dbgs() << "\n";
                   DBGS() << "Candidate write for hoisting: "
                          << *write.transferWriteOp.getOperation() << "\n");
        if (write.insertSliceOp)
          LLVM_DEBUG(DBGS() << "Candidate insert_slice for hoisting: "
                            << *write.insertSliceOp.getOperation() << "\n");
        if (llvm::any_of(write.transferWriteOp.getIndices(),
                         [&forOp](Value index) {
                           return !forOp.isDefinedOutsideOfLoop(index);
                         }))
          continue;
        // Find a read with the same type and indices.
        HoistableRead matchingRead =
            findMatchingTransferRead(write, it.value());
        // Make sure none of the other uses read the part of the tensor modified
        // by the transfer_write.
        if (!matchingRead.transferReadOp ||
            tensorChunkAccessedByUnknownOp(write, matchingRead, it.value()))
          continue;

        LLVM_DEBUG(DBGS() << "Start hoisting\n");
        hoistReadWrite(matchingRead, write, it.value());
        changed = true;
        forOp.erase();

        // Need to interrupt and restart: erasing the loop messes up the walk.
        return WalkResult::interrupt();
      }
      return WalkResult::advance();
    });
    // Apply canonicalization so the newForOp + yield folds immediately, thus
    // cleaning up the IR and potentially enabling more hoisting.
    if (changed) {
      RewritePatternSet patterns(func->getContext());
      scf::ForOp::getCanonicalizationPatterns(patterns, func->getContext());
      (void)applyPatternsAndFoldGreedily(func, std::move(patterns));
    }
  }
}

void mlir::linalg::hoistRedundantVectorTransfers(func::FuncOp func) {
  bool changed = true;
  while (changed) {
    changed = false;
    // First move loop invariant ops outside of their loop. This needs to be
    // done before as we cannot move ops without interrupting the function walk.
    func.walk(
        [&](LoopLikeOpInterface loopLike) { moveLoopInvariantCode(loopLike); });

    func.walk([&](vector::TransferReadOp transferRead) {
      if (!transferRead.getShapedType().isa<MemRefType>())
        return WalkResult::advance();

      LLVM_DEBUG(DBGS() << "Candidate for hoisting: "
                        << *transferRead.getOperation() << "\n");
      auto loop = dyn_cast<LoopLikeOpInterface>(transferRead->getParentOp());
      LLVM_DEBUG(DBGS() << "Parent op: " << *transferRead->getParentOp()
                        << "\n");
      if (!isa_and_nonnull<scf::ForOp, AffineForOp>(loop))
        return WalkResult::advance();

      LLVM_DEBUG(DBGS() << "Candidate read: " << *transferRead.getOperation()
                        << "\n");

      SetVector<Operation *> forwardSlice;
      getForwardSlice(transferRead.getOperation(), &forwardSlice);

      // Look for the last TransferWriteOp in the forwardSlice of
      // `transferRead` that operates on the same memref.
      vector::TransferWriteOp transferWrite;
      for (auto *sliceOp : llvm::reverse(forwardSlice)) {
        auto candidateWrite = dyn_cast<vector::TransferWriteOp>(sliceOp);
        if (!candidateWrite ||
            candidateWrite.getSource() != transferRead.getSource())
          continue;
        transferWrite = candidateWrite;
      }

      // All operands of the TransferRead must be defined outside of the loop.
      for (auto operand : transferRead.getOperands())
        if (!loop.isDefinedOutsideOfLoop(operand))
          return WalkResult::advance();

      // Only hoist transfer_read / transfer_write pairs for now.
      if (!transferWrite)
        return WalkResult::advance();

      LLVM_DEBUG(DBGS() << "Candidate: " << *transferWrite.getOperation()
                        << "\n");

      // Approximate aliasing by checking that:
      //   1. indices are the same,
      //   2. no other operations in the loop access the same memref except
      //      for transfer_read/transfer_write accessing statically disjoint
      //      slices.
      if (transferRead.getIndices() != transferWrite.getIndices() &&
          transferRead.getVectorType() == transferWrite.getVectorType())
        return WalkResult::advance();

      // TODO: may want to memoize this information for performance but it
      // likely gets invalidated often.
      DominanceInfo dom(loop);
      if (!dom.properlyDominates(transferRead.getOperation(), transferWrite))
        return WalkResult::advance();
      for (auto &use : transferRead.getSource().getUses()) {
        if (!loop->isAncestor(use.getOwner()))
          continue;
        if (use.getOwner() == transferRead.getOperation() ||
            use.getOwner() == transferWrite.getOperation())
          continue;
        if (auto transferWriteUse =
                dyn_cast<vector::TransferWriteOp>(use.getOwner())) {
          if (!vector::isDisjointTransferSet(
                  cast<VectorTransferOpInterface>(transferWrite.getOperation()),
                  cast<VectorTransferOpInterface>(
                      transferWriteUse.getOperation())))
            return WalkResult::advance();
        } else if (auto transferReadUse =
                       dyn_cast<vector::TransferReadOp>(use.getOwner())) {
          if (!vector::isDisjointTransferSet(
                  cast<VectorTransferOpInterface>(transferWrite.getOperation()),
                  cast<VectorTransferOpInterface>(
                      transferReadUse.getOperation())))
            return WalkResult::advance();
        } else {
          // Unknown use, we cannot prove that it doesn't alias with the
          // transferRead/transferWrite operations.
          return WalkResult::advance();
        }
      }

      // Hoist read before.
      loop.moveOutOfLoop(transferRead);

      // Hoist write after.
      transferWrite->moveAfter(loop);

      // Rewrite `loop` with new yields by cloning and erase the original loop.
      OpBuilder b(transferRead);
      NewYieldValueFn yieldFn = [&](OpBuilder &b, Location loc,
                                    ArrayRef<BlockArgument> newBBArgs) {
        return SmallVector<Value>{transferWrite.getVector()};
      };

      // Transfer write has been hoisted, need to update the written vector by
      // the value yielded by the newForOp.
      return TypeSwitch<Operation *, WalkResult>(loop)
          .Case<scf::ForOp>([&](scf::ForOp scfForOp) {
            auto newForOp = replaceLoopWithNewYields(
                b, scfForOp, transferRead.getVector(), yieldFn);
            transferWrite.getVectorMutable().assign(
                newForOp.getResults().back());
            changed = true;
            loop.erase();
            // Need to interrupt and restart because erasing the loop messes up
            // the walk.
            return WalkResult::interrupt();
          })
          .Case<AffineForOp>([&](AffineForOp affineForOp) {
            auto newForOp = replaceForOpWithNewYields(
                b, affineForOp, transferRead.getVector(),
                SmallVector<Value>{transferWrite.getVector()},
                transferWrite.getVector());
            // Replace all uses of the `transferRead` with the corresponding
            // basic block argument.
            transferRead.getVector().replaceUsesWithIf(
                newForOp.getLoopBody().getArguments().back(),
                [&](OpOperand &use) {
                  Operation *user = use.getOwner();
                  return newForOp->isProperAncestor(user);
                });
            transferWrite.getVectorMutable().assign(
                newForOp.getResults().back());
            changed = true;
            loop.erase();
            // Need to interrupt and restart because erasing the loop messes up
            // the walk.
            return WalkResult::interrupt();
          })
          .Default([](Operation *) { return WalkResult::interrupt(); });
    });
  }
}