1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
|
//===- Transforms.cpp - Linalg transformations as patterns ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements logic and helpers to expose Linalg transforms as rewrite
// patterns.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/Analysis/DependenceAnalysis.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Linalg/Transforms/HoistPadding.h"
#include "mlir/Dialect/Linalg/Utils/Utils.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/IR/TensorTilingInterfaceImpl.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <type_traits>
#include <utility>
#define DEBUG_TYPE "linalg-transforms"
using namespace mlir;
using namespace mlir::linalg;
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ")
#define DBGSNL() (llvm::dbgs() << "\n")
//===----------------------------------------------------------------------===//
// Transformations exposed as rewrite patterns.
//===----------------------------------------------------------------------===//
LinalgTilingOptions &
mlir::linalg::LinalgTilingOptions::setTileSizes(ArrayRef<int64_t> ts) {
assert(!tileSizeComputationFunction && "tile sizes already set");
SmallVector<int64_t, 4> tileSizes(ts.begin(), ts.end());
tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
OpBuilder::InsertionGuard guard(b);
b.setInsertionPointToStart(
&op->getParentOfType<func::FuncOp>().getBody().front());
return llvm::to_vector<4>(map_range(tileSizes, [&](int64_t s) {
Value v = b.create<arith::ConstantIndexOp>(op->getLoc(), s);
return v;
}));
};
return *this;
}
/// Pad the `opOperand` in the `paddingDimensions` using the padding value and
/// the nofold flag found in `paddingValues` and `packPaddings`, respectively.
/// Exit early and return the `opOperand` value if the shape dimensions that
/// match `paddingDimensions` have a static size and the nofold flag is not set.
/// Otherwise, try to pad the shape dimensions that match the iterator
/// dimensions `paddingDimensions` and return the tensor::PadOp result if
/// padding succeeds or failure otherwise.
static FailureOr<Value> padOperandToSmallestStaticBoundingBox(
OpBuilder &b, linalg::LinalgOp opToPad, OpOperand *opOperand,
ArrayRef<int64_t> paddingDimensions, ArrayRef<Attribute> paddingValues,
ArrayRef<bool> packPaddings) {
AffineMap indexingMap = opToPad.getMatchingIndexingMap(opOperand);
ArrayRef<int64_t> shape = opToPad.getShape(opOperand);
// Collect the shape dimension that are a function of the `paddingDimensions`.
llvm::SmallDenseSet<int64_t> shapeDimsToPad;
for (int64_t dim : paddingDimensions)
for (const auto &en : enumerate(indexingMap.getResults()))
if (en.value().isFunctionOfDim(dim))
shapeDimsToPad.insert(en.index());
// Return the unpadded operand if padding to a static shape is not needed and
// if the nofold flag is not set.
bool nofold = opOperand->getOperandNumber() < packPaddings.size()
? packPaddings[opOperand->getOperandNumber()]
: false;
bool hasStaticShape = llvm::none_of(shapeDimsToPad, [&](int64_t dim) {
return ShapedType::isDynamic(shape[dim]);
});
if (!nofold && hasStaticShape)
return opOperand->get();
// Fail if `paddingValues` specifies no padding value.
if (opOperand->getOperandNumber() >= paddingValues.size())
return failure();
Attribute paddingAttr = paddingValues[opOperand->getOperandNumber()];
Type paddingType = b.getType<NoneType>();
if (auto typedAttr = paddingAttr.dyn_cast<TypedAttr>())
paddingType = typedAttr.getType();
Value paddingValue =
b.create<arith::ConstantOp>(opToPad.getLoc(), paddingType, paddingAttr);
// Follow the use-def chain if `currOpOperand` is defined by a LinalgOp.
OpOperand *currOpOperand = opOperand;
while (auto linalgOp = currOpOperand->get().getDefiningOp<LinalgOp>()) {
OpResult result = currOpOperand->get().cast<OpResult>();
currOpOperand = linalgOp.getDpsInitOperand(result.getResultNumber());
}
// Fail if `currOpOperand` is not defined by an ExtractSliceOp.
auto sliceOp = currOpOperand->get().getDefiningOp<tensor::ExtractSliceOp>();
if (!sliceOp)
return failure();
// Compute the dropped dimensions if `sliceOp` is ranke-reducing.
llvm::SmallBitVector droppedDims = sliceOp.getDroppedDims();
OffsetSizeAndStrideOpInterface shapedOp = sliceOp;
// Upper bound the `sliceOp` sizes to obtain a static bounding box.
SmallVector<int64_t> paddedShape(shape.begin(), shape.end());
int64_t shapeIdx = 0;
for (const auto &en : enumerate(shapedOp.getMixedSizes())) {
// Skip dropped dimensions.
if (droppedDims.test(en.index()))
continue;
// Skip dimensions that do not require padding.
if (!shapeDimsToPad.contains(shapeIdx)) {
shapeIdx++;
continue;
}
// If the size is an attribute add it directly to `paddedShape`.
if (en.value().is<Attribute>()) {
paddedShape[shapeIdx++] =
en.value().get<Attribute>().dyn_cast<IntegerAttr>().getInt();
continue;
}
// Otherwise, try to compute a constant upper bound for the size value.
FailureOr<int64_t> upperBound =
getConstantUpperBoundForIndex(en.value().get<Value>());
if (failed(upperBound)) {
LLVM_DEBUG(DBGS() << "No constant bounding box can be found for padding");
return failure();
}
paddedShape[shapeIdx++] = *upperBound;
}
assert(shapeIdx == static_cast<int64_t>(shape.size()) &&
"expect the dynamic and static ranks to match");
// Pad the operand to the bounding box defined by `paddedShape`.
auto paddedTensorType = RankedTensorType::get(
paddedShape, getElementTypeOrSelf(opOperand->get()));
return makeComposedPadHighOp(b, opToPad->getLoc(), paddedTensorType,
opOperand->get(), paddingValue, nofold);
}
FailureOr<SmallVector<Value>>
linalg::rewriteAsPaddedOp(OpBuilder &b, LinalgOp opToPad,
ArrayRef<int64_t> paddingDimensions,
ArrayRef<Attribute> paddingValues,
ArrayRef<bool> packPaddings, LinalgOp &paddedOp) {
Location loc = opToPad->getLoc();
// TODO: there are cases where we may still want to pad to larger sizes.
assert(opToPad.hasTensorSemantics() &&
"expected operation to have tensor semantics");
OpBuilder::InsertionGuard g(b);
// Set IP after op because we also take the dims of the original output.
b.setInsertionPointAfter(opToPad);
// Make a copy of the shaped operands and update it.
SmallVector<Value> newOperands;
newOperands.reserve(opToPad->getNumOperands());
for (OpOperand &opOperand : opToPad->getOpOperands()) {
FailureOr<Value> paddedOperand = padOperandToSmallestStaticBoundingBox(
b, opToPad, &opOperand, paddingDimensions, paddingValues, packPaddings);
// Exit if `paddingDimensions` cannot be bounded statically.
if (failed(paddedOperand))
return failure();
newOperands.push_back(*paddedOperand);
}
SmallVector<SmallVector<Value>> reifiedResultShapes;
if (failed(cast<ReifyRankedShapedTypeOpInterface>(opToPad.getOperation())
.reifyResultShapes(b, reifiedResultShapes)))
return failure();
assert(reifiedResultShapes.size() == opToPad->getNumResults() &&
"expected same number of results");
// Clone `opToPad` to operate on the statically padded shapes.
auto resultTensorTypes =
ValueRange(newOperands).take_back(opToPad.getNumDpsInits()).getTypes();
paddedOp = clone(b, opToPad, resultTensorTypes, newOperands);
// Recover the slice out of the new static results. This keeps the original
// linalg op around because it uses the dims of the original results.
SmallVector<Value> paddedSubviewResults;
paddedSubviewResults.reserve(opToPad->getNumResults());
for (const auto &en : llvm::enumerate(paddedOp->getResults())) {
Value paddedResult = en.value();
int64_t resultNumber = en.index();
int64_t rank = paddedResult.getType().cast<RankedTensorType>().getRank();
SmallVector<OpFoldResult> offsets(rank, b.getIndexAttr(0));
SmallVector<OpFoldResult> sizes;
for (Value v : reifiedResultShapes[resultNumber])
sizes.push_back(getAsOpFoldResult(v));
SmallVector<OpFoldResult> strides(rank, b.getIndexAttr(1));
paddedSubviewResults.push_back(b.create<tensor::ExtractSliceOp>(
loc, paddedResult, offsets, sizes, strides));
}
return paddedSubviewResults;
}
/// Try to peel a loop `op` and return the new result.
// TODO: Add support for scf.parallel and affine.for loops.
SmallVector<Value> mlir::linalg::peelLoop(RewriterBase &rewriter,
Operation *op) {
return llvm::TypeSwitch<Operation *, SmallVector<Value, 4>>(op)
.Case<scf::ForOp>([&](scf::ForOp forOp) {
scf::ForOp partialIteration;
if (succeeded(scf::peelAndCanonicalizeForLoop(rewriter, forOp,
partialIteration)))
return partialIteration->getResults();
assert(!partialIteration && "expected that loop was not peeled");
return forOp->getResults();
})
.Default([&](Operation *op) { return op->getResults(); });
}
/// Peel and canonicalize 'loops'.
void mlir::linalg::peelLoops(RewriterBase &rewriter,
ArrayRef<scf::ForOp> loops) {
for (auto loopOp : loops)
peelLoop(rewriter, loopOp);
}
/// Linalg padding pattern.
mlir::linalg::LinalgPaddingPattern::LinalgPaddingPattern(
MLIRContext *context, LinalgPaddingOptions options, PatternBenefit benefit)
: OpInterfaceRewritePattern<LinalgOp>(context, benefit),
options(std::move(options)) {}
FailureOr<LinalgOp>
mlir::linalg::LinalgPaddingPattern::returningMatchAndRewrite(
LinalgOp linalgOp, PatternRewriter &rewriter) const {
if (!linalgOp.hasTensorSemantics())
return failure();
// Pad the operation.
LinalgOp paddedOp;
FailureOr<SmallVector<Value>> newResults =
rewriteAsPaddedOp(rewriter, linalgOp, options.paddingDimensions,
options.paddingValues, options.packPaddings, paddedOp);
if (failed(newResults))
return failure();
// Hoist the padding.
for (const auto &en : enumerate(options.hoistPaddings)) {
if (static_cast<int64_t>(en.index()) >= paddedOp->getNumOperands())
break;
OpOperand &opOperand = paddedOp->getOpOperand(en.index());
auto padOp = opOperand.get().getDefiningOp<tensor::PadOp>();
if (!padOp || en.value() == 0)
continue;
// Fail hoisting if the operand shape is not fully static.
if (llvm::any_of(paddedOp.getShape(&opOperand), ShapedType::isDynamic))
return failure();
tensor::PadOp hoistedOp;
SmallVector<GenericOp> transposeOps;
SmallVector<int64_t> transposeVector =
en.index() < options.transposePaddings.size()
? options.transposePaddings[en.index()]
: SmallVector<int64_t>{};
FailureOr<Value> newResult = hoistPaddingOnTensors(
padOp, en.value(), transposeVector, hoistedOp, transposeOps);
if (failed(newResult))
continue;
rewriter.replaceOp(padOp, *newResult);
}
// Replace the original operation to pad.
rewriter.replaceOp(linalgOp, *newResults);
return paddedOp;
}
LogicalResult mlir::linalg::CopyVectorizationPattern::matchAndRewrite(
memref::CopyOp copyOp, PatternRewriter &rewriter) const {
return vectorizeCopy(rewriter, copyOp);
}
static SmallVector<utils::IteratorType>
getNParallelLoopsAttrs(unsigned nParallelLoops) {
return SmallVector<utils::IteratorType>(nParallelLoops,
utils::IteratorType::parallel);
}
/// Rewrite a tensor::PadOp into a sequence of EmptyOp, FillOp (to
/// initialize with pad_val) and GenericOp (to copy contents).
LogicalResult
PadOpTransformationPattern::matchAndRewrite(tensor::PadOp padOp,
PatternRewriter &rewriter) const {
auto inputShapedType = padOp.getSource().getType().cast<ShapedType>();
auto resultShapedType = padOp.getResult().getType().cast<ShapedType>();
// Bail on non-static shapes.
if (!inputShapedType.hasStaticShape())
return failure();
if (!resultShapedType.hasStaticShape())
return failure();
// Only support padding with a constant for now, i.e. either:
// 1. A BBarg from a different block.
// 2. A value defined outside of the current block.
Block &block = padOp.getRegion().front();
auto yieldOp = cast<tensor::YieldOp>(block.getTerminator());
Value padValue = yieldOp.getValue();
Operation *definingOp = padValue.getDefiningOp();
if (definingOp && definingOp->getBlock() == &block)
return failure();
if (!definingOp && padValue.cast<BlockArgument>().getOwner() == &block)
return failure();
// Create tensor with the padded shape
Location loc = padOp.getLoc();
SmallVector<Value> indices(resultShapedType.getRank(),
rewriter.create<arith::ConstantIndexOp>(loc, 0));
Value emptyTensor = rewriter.create<tensor::EmptyOp>(
loc, resultShapedType.getShape(), resultShapedType.getElementType());
// Initialize tensor with the pad value
Value tmpTensor = rewriter
.create<linalg::FillOp>(loc, ValueRange{padValue},
ValueRange{emptyTensor})
.result();
// Copy original contents into new tensor
// Uses linalg.generic, but could be done with tensor.insert_slice
SmallVector<AffineExpr, 4> outputExprs;
for (unsigned i = 0; i < resultShapedType.getRank(); ++i) {
outputExprs.push_back(getAffineDimExpr(i, rewriter.getContext()) +
padOp.getStaticLow()[i]);
}
SmallVector<AffineMap, 2> transferMaps = {
rewriter.getMultiDimIdentityMap(inputShapedType.getRank()),
AffineMap::get(resultShapedType.getRank(),
/*symbolCount=*/0, outputExprs, rewriter.getContext())};
rewriter.replaceOpWithNewOp<linalg::GenericOp>(
padOp, resultShapedType, padOp.getSource(), tmpTensor, transferMaps,
getNParallelLoopsAttrs(resultShapedType.getRank()),
[&](OpBuilder &nestedBuilder, Location nestedLoc, ValueRange args) {
nestedBuilder.create<linalg::YieldOp>(nestedLoc, args[0]);
});
return success();
}
/// Filling `dest` using FillOp constant padding value if possible.
/// Otherwise, generate a tensor::GenerateOp.
Value GeneralizePadOpPattern::createFillOrGenerateOp(
PatternRewriter &rewriter, tensor::PadOp padOp, Value dest,
const SmallVector<Value> &dynSizes) const {
auto padValue = padOp.getConstantPaddingValue();
if (padValue)
return rewriter.create<FillOp>(padOp.getLoc(), padValue, dest).result();
// Fill could not be optimized: Lower to tensor::GenerateOp with region.
auto generateOp = rewriter.create<tensor::GenerateOp>(
padOp.getLoc(), padOp.getResultType(), dynSizes);
// Copy region to new op.
IRMapping bvm;
padOp.getRegion().cloneInto(&generateOp.getRegion(), bvm);
return generateOp;
}
LogicalResult
GeneralizePadOpPattern::matchAndRewrite(tensor::PadOp padOp,
PatternRewriter &rewriter) const {
// Given an OpFoldResult, return an index-typed value.
auto getIdxValue = [&](OpFoldResult ofr) {
if (auto val = ofr.dyn_cast<Value>())
return val;
return rewriter
.create<arith::ConstantIndexOp>(
padOp.getLoc(), ofr.get<Attribute>().cast<IntegerAttr>().getInt())
.getResult();
};
auto resultType = padOp.getResultType();
// Compute size of EmptyOp. Any combination of static/dynamic is supported.
SmallVector<Value> dynSizes;
SmallVector<int64_t> staticSizes;
for (unsigned dim = 0; dim < resultType.getRank(); ++dim) {
if (resultType.isDynamicDim(dim)) {
auto srcSize = rewriter.createOrFold<tensor::DimOp>(
padOp.getLoc(), padOp.getSource(), dim);
// Add low and high padding value.
auto plusLow = rewriter.createOrFold<arith::AddIOp>(
padOp.getLoc(), srcSize, getIdxValue(padOp.getMixedLowPad()[dim]));
auto plusHigh = rewriter.createOrFold<arith::AddIOp>(
padOp.getLoc(), plusLow, getIdxValue(padOp.getMixedHighPad()[dim]));
dynSizes.push_back(plusHigh);
}
staticSizes.push_back(resultType.getDimSize(dim));
}
// Init tensor and fill it with padding.
Value emptyTensor = rewriter.create<tensor::EmptyOp>(
padOp.getLoc(), staticSizes, resultType.getElementType(), dynSizes);
Value fill = createFillOrGenerateOp(rewriter, padOp, emptyTensor, dynSizes);
// Try optimize the copy of source.
if (optimizeCopyFn && optimizeCopyFn(rewriter, padOp, fill).succeeded())
return success();
// tensor::PadOps cannot be optimized. Generate a InsertSliceOp instead
// for copying the PadOp source.
auto sourceType = padOp.getSourceType();
// Compute size of source of tensor::PadOp.
SmallVector<OpFoldResult> srcSizes;
for (unsigned dim = 0; dim < sourceType.getRank(); ++dim) {
if (sourceType.isDynamicDim(dim)) {
srcSizes.push_back(rewriter.createOrFold<tensor::DimOp>(
padOp.getLoc(), padOp.getSource(), dim));
} else {
srcSizes.push_back(rewriter.getIndexAttr(sourceType.getDimSize(dim)));
}
}
// Strides of InsertSliceOp are all 1.
SmallVector<OpFoldResult> strides(sourceType.getRank(),
rewriter.getIndexAttr(1));
rewriter.replaceOpWithNewOp<tensor::InsertSliceOp>(
padOp, padOp.getSource(), fill, padOp.getMixedLowPad(), srcSizes,
strides);
return success();
}
LogicalResult ExtractSliceOfPadTensorSwapPattern::matchAndRewrite(
tensor::ExtractSliceOp sliceOp, PatternRewriter &rewriter) const {
if (!sliceOp.hasUnitStride())
return failure();
auto padOp = sliceOp.getSource().getDefiningOp<tensor::PadOp>();
if (!padOp)
return failure();
bool zeroSliceGuard = true;
if (controlFn) {
if (std::optional<bool> control = controlFn(sliceOp))
zeroSliceGuard = *control;
else
return failure();
}
Operation *tiledPadOp =
tensor::bubbleUpPadSlice(rewriter, padOp, sliceOp.getMixedOffsets(),
sliceOp.getMixedSizes(), zeroSliceGuard);
// All shapes are static and the data source is actually used. Rewrite into
// pad(extract_slice(x)).
rewriter.replaceOp(sliceOp, tiledPadOp->getResults());
return success();
}
/// Returns a tensor.pad op if padding value is set. Otherwise, returns the
/// source directly. The method assumes that the `packOp` has static shapes.
static Value getPackOpSourceOrPaddedSource(OpBuilder &builder,
tensor::PackOp packOp) {
Value input = packOp.getSource();
if (!packOp.getPaddingValue()) {
return input;
}
Location loc = packOp.getLoc();
ShapedType inputType = packOp.getSourceType();
int64_t inputRank = inputType.getRank();
assert(llvm::all_of(packOp.getDestType().getShape().take_front(inputRank),
[](int64_t val) { return val == 1; }));
SmallVector<int64_t> paddedShape;
DenseMap<int64_t, OpFoldResult> tileAndPosMapping =
packOp.getDimAndTileMapping();
for (int64_t dim = 0; dim < inputRank; ++dim) {
int64_t size = inputType.getDimSize(dim);
if (!tileAndPosMapping.count(dim)) {
paddedShape.push_back(size);
continue;
}
// The size is less than or equal to tileSize because outer dims are all 1s.
std::optional<int64_t> tileSize =
getConstantIntValue(tileAndPosMapping.lookup(dim));
assert(tileSize.has_value() && "dynamic inner tile size is not supported");
paddedShape.push_back(tileSize.value());
}
auto resultType =
RankedTensorType::get(paddedShape, inputType.getElementType());
return tensor::createPadHighOp(resultType, input, packOp.getPaddingValue(),
/*nofold=*/false, loc, builder);
}
static SmallVector<int64_t>
getPackUnpackNormalizedInnerPerm(int rank, ArrayRef<int64_t> innerDimsPos) {
constexpr int64_t kNonTiledMarker = -1;
SmallVector<int64_t> vec(rank, kNonTiledMarker);
for (auto [index, value] : llvm::enumerate(innerDimsPos))
vec[value] = index;
SmallVector<int64_t> perm = llvm::to_vector(llvm::make_filter_range(
vec, [&](int64_t v) { return v != kNonTiledMarker; }));
return perm;
}
LogicalResult GeneralizeOuterUnitDimsPackOpPattern::matchAndRewrite(
tensor::PackOp packOp, PatternRewriter &rewriter) const {
// TODO: support the case that outer dimensions are not all 1s A
// tensor.expand_shape will be generated in this case.
int64_t srcRank = packOp.getSourceRank();
if (llvm::any_of(packOp.getDestType().getShape().take_front(srcRank),
[](int64_t val) { return val != 1; })) {
return rewriter.notifyMatchFailure(
packOp, "require the outer dimension of the result are all 1s");
}
if (llvm::any_of(packOp.getMixedTiles(),
[](OpFoldResult tile) { return tile.is<Value>(); })) {
return rewriter.notifyMatchFailure(packOp,
"require inner tile sizes being static");
}
// 1. Use rank-reduced tensor.extract_slice op to extract the tile.
Location loc = packOp.getLoc();
Attribute zeroIdxAttr = rewriter.getIndexAttr(0);
Attribute oneIdxAttr = rewriter.getIndexAttr(1);
SmallVector<OpFoldResult> readOffsets(srcRank, zeroIdxAttr);
SmallVector<OpFoldResult> readStrides(srcRank, oneIdxAttr);
SmallVector<OpFoldResult> readSizes;
SmallVector<int64_t> readShape;
DenseMap<int64_t, OpFoldResult> dimAndTileMapping =
packOp.getDimAndTileMapping();
for (auto i : llvm::seq<unsigned>(0, srcRank)) {
if (!dimAndTileMapping.count(i)) {
readSizes.push_back(oneIdxAttr);
continue;
}
readSizes.push_back(dimAndTileMapping[i]);
readShape.push_back(getConstantIntValue(dimAndTileMapping[i])
.value_or(ShapedType::kDynamic));
}
Type elemType = packOp.getSourceType().getElementType();
auto readType = RankedTensorType::get(readShape, elemType);
Value input = getPackOpSourceOrPaddedSource(rewriter, packOp);
Value tile = rewriter.create<tensor::ExtractSliceOp>(
loc, readType, input, readOffsets, readSizes, readStrides);
// 2. Transpose the tile to match the inner tile order.
SmallVector<int64_t> perm =
getPackUnpackNormalizedInnerPerm(srcRank, packOp.getInnerDimsPos());
SmallVector<int64_t> transpShape = readShape;
applyPermutationToVector<int64_t>(transpShape, perm);
Value empty = rewriter.create<tensor::EmptyOp>(loc, transpShape, elemType);
auto transposedOp =
rewriter.create<linalg::TransposeOp>(loc, tile, empty, perm);
// 3. Insert the inner tile to the destination.
int64_t destRank = packOp.getDestRank();
SmallVector<OpFoldResult> writeStrides(destRank, oneIdxAttr);
SmallVector<OpFoldResult> writeOffsets(destRank, zeroIdxAttr);
SmallVector<OpFoldResult> writeSizes(srcRank, oneIdxAttr);
for (auto size : transpShape)
writeSizes.push_back(rewriter.getIndexAttr(size));
auto insert = rewriter.create<tensor::InsertSliceOp>(
loc, transposedOp.getResult()[0], packOp.getDest(), writeOffsets,
writeSizes, writeStrides);
rewriter.replaceOp(packOp, insert.getResult());
return success();
}
LogicalResult GeneralizeOuterUnitDimsUnPackOpPattern::matchAndRewrite(
tensor::UnPackOp unpackOp, PatternRewriter &rewriter) const {
int64_t srcRank = unpackOp.getSourceRank();
int64_t destRank = unpackOp.getDestRank();
ArrayRef<int64_t> srcShape = unpackOp.getSourceType().getShape();
if (llvm::any_of(srcShape.take_front(destRank),
[](int64_t val) { return val != 1; })) {
return rewriter.notifyMatchFailure(
unpackOp, "require the outer dimension of the result are all 1s");
}
// 1. Use rank-reduced tensor.extract_slice op to extract the tile.
Location loc = unpackOp.getLoc();
Attribute zeroIdxAttr = rewriter.getIndexAttr(0);
Attribute oneIdxAttr = rewriter.getIndexAttr(1);
SmallVector<OpFoldResult> readOffsets(srcRank, zeroIdxAttr);
SmallVector<OpFoldResult> readStrides(srcRank, oneIdxAttr);
auto mixedTiles = unpackOp.getMixedTiles();
SmallVector<OpFoldResult> readSizes(destRank, oneIdxAttr);
readSizes.append(mixedTiles.begin(), mixedTiles.end());
// Explicitly create the type for extract_slice op because the inner tile
// size could be 1. We want to represent the whole inner tile in this case.
ArrayRef<int64_t> readShape = srcShape.drop_front(destRank);
Type elemType = unpackOp.getSourceType().getElementType();
auto readType = RankedTensorType::get(readShape, elemType);
Value innerTile = rewriter.create<tensor::ExtractSliceOp>(
loc, readType, unpackOp.getSource(), readOffsets, readSizes, readStrides);
// 2. Transpose the tile to match the outer corresponding tile order.
ArrayRef<int64_t> innerDimsPos = unpackOp.getInnerDimsPos();
SmallVector<int64_t> perm =
getPackUnpackNormalizedInnerPerm(srcRank, innerDimsPos);
SmallVector<int64_t> transpShape(readShape);
applyPermutationToVector<int64_t>(transpShape, perm);
Value empty = rewriter.create<tensor::EmptyOp>(loc, transpShape, elemType);
auto transposedOp =
rewriter.create<linalg::TransposeOp>(loc, innerTile, empty, perm);
// 3. Handle in-complete tiles if needed. It truncates trailing data from the
// transposed tile.
int numLoops = transpShape.size();
SmallVector<OpFoldResult> tileStrides(numLoops, oneIdxAttr);
SmallVector<OpFoldResult> tileOffsets(numLoops, zeroIdxAttr);
SmallVector<OpFoldResult> tileSizes;
for (int dim : innerDimsPos)
tileSizes.push_back(getAsOpFoldResult(
rewriter.createOrFold<tensor::DimOp>(loc, unpackOp.getDest(), dim)));
applyPermutationToVector<OpFoldResult>(tileSizes, perm);
auto partialTile = rewriter.create<tensor::ExtractSliceOp>(
loc, transposedOp.getResult()[0], tileOffsets, tileSizes, tileStrides);
// 4. Insert the result to the destination tensor.
SmallVector<OpFoldResult> writeSizes;
SmallVector<OpFoldResult> writeStrides(destRank, oneIdxAttr);
SmallVector<OpFoldResult> writeOffsets(destRank, zeroIdxAttr);
DenseMap<int64_t, OpFoldResult> dimAndTileMapping =
unpackOp.getDimAndTileMapping();
for (int i = 0, idx = 0; i < destRank; ++i) {
if (dimAndTileMapping.count(i))
writeSizes.push_back(tileSizes[idx++]);
else
writeSizes.push_back(oneIdxAttr);
}
auto insert = rewriter.create<tensor::InsertSliceOp>(
loc, partialTile, unpackOp.getDest(), writeOffsets, writeSizes,
writeStrides);
rewriter.replaceOp(unpackOp, insert.getResult());
return success();
}
// The following are patterns for downscaling convolution ops with size-1
// window dimensions.
//
// Note that we'd eventually want to write such transformations in a generic
// way, e.g., converting to linalg.generic, removing the size-1 dimensions,
// and then turning back to named ops. But for now it's fine to have a few
// patterns matching special ops to get started.
template <typename Conv2DOp, typename Conv1DOp>
FailureOr<Conv1DOp> DownscaleSizeOneWindowed2DConvolution<Conv2DOp, Conv1DOp>::
returningMatchAndRewrite(Conv2DOp convOp, PatternRewriter &rewriter) const {
if (convOp.hasBufferSemantics())
return failure(); // To be implemented.
Value input = convOp.getInputs().front();
Value kernel = convOp.getInputs().back();
Value output = convOp.getOutputs().front();
auto inputType = input.getType().dyn_cast<RankedTensorType>();
auto kernelType = kernel.getType().dyn_cast<RankedTensorType>();
auto outputType = output.getType().dyn_cast<RankedTensorType>();
auto kernelShape = kernelType.getShape();
auto outputShape = outputType.getShape();
// Get domain indices based on conv2D layout.
auto [khIndex, kwIndex, ohIndex, owIndex] =
TypeSwitch<Operation *, std::tuple<int64_t, int64_t, int64_t, int64_t>>(
convOp)
.Case([&](linalg::Conv2DNhwcHwcfOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::Conv2DNchwFchwOp op) {
return std::make_tuple(2, 3, 2, 3);
})
.Case([&](linalg::PoolingNhwcSumOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::PoolingNchwSumOp op) {
return std::make_tuple(0, 1, 2, 3);
})
.Case([&](linalg::PoolingNhwcMaxOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::PoolingNhwcMaxUnsignedOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::PoolingNhwcMinOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::PoolingNhwcMinUnsignedOp op) {
return std::make_tuple(0, 1, 1, 2);
})
.Case([&](linalg::PoolingNchwMaxOp op) {
return std::make_tuple(0, 1, 2, 3);
})
.Default([&](Operation *op) {
llvm_unreachable("unexpected conv2d/pool2d operation.");
return std::make_tuple(0, 0, 0, 0);
});
// Only handle the case where at least one of the window dimensions is
// of size 1. Other cases can rely on tiling to reduce to such cases.
int64_t khSize = kernelShape[khIndex], kwSize = kernelShape[kwIndex];
int64_t ohSize = outputShape[ohIndex], owSize = outputShape[owIndex];
bool removeH = (khSize == 1 && ohSize == 1);
bool removeW = (kwSize == 1 && owSize == 1);
if (!removeH && !removeW)
return failure();
// Get new shapes and types for all operands by removing the size-1
// dimension.
using RTTBuilder = RankedTensorType::Builder;
RankedTensorType newInputType =
RTTBuilder(inputType).dropDim((removeH ? ohIndex : owIndex));
RankedTensorType newKernelType =
RTTBuilder(kernelType).dropDim((removeH ? khIndex : kwIndex));
RankedTensorType newOutputType =
RTTBuilder(outputType).dropDim((removeH ? ohIndex : owIndex));
// Rank-reduce operands.
Location loc = convOp.getLoc();
Value newInput = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, input, newInputType);
Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, kernel, newKernelType);
Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, output, newOutputType);
// Rank-reduce strides and dilations too.
// TODO: dropDim 1-liner helper.
auto strides =
llvm::to_vector<4>(convOp.getStrides().template getValues<int64_t>());
strides.erase(strides.begin() + (removeH ? 0 : 1));
auto stridesAttr = rewriter.getI64VectorAttr(strides);
auto dilations =
llvm::to_vector<4>(convOp.getDilations().template getValues<int64_t>());
dilations.erase(dilations.begin() + (removeH ? 0 : 1));
auto dilationsAttr = rewriter.getI64VectorAttr(dilations);
auto conv1DOp = rewriter.create<Conv1DOp>(
loc, newOutputType, ValueRange{newInput, newKernel},
ValueRange{newOutput}, stridesAttr, dilationsAttr);
// Insert back.
Value inserted = tensor::createCanonicalRankReducingInsertSliceOp(
rewriter, loc, conv1DOp.getResult(0), output);
rewriter.replaceOp(convOp, inserted);
return conv1DOp;
}
template struct linalg::DownscaleSizeOneWindowed2DConvolution<Conv2DNhwcHwcfOp,
Conv1DNwcWcfOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<Conv2DNchwFchwOp,
Conv1DNcwFcwOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNhwcSumOp,
PoolingNwcSumOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNchwSumOp,
PoolingNcwSumOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMaxOp,
PoolingNwcMaxOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<
PoolingNhwcMaxUnsignedOp, PoolingNwcMaxUnsignedOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMinOp,
PoolingNwcMinOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<
PoolingNhwcMinUnsignedOp, PoolingNwcMinUnsignedOp>;
template struct linalg::DownscaleSizeOneWindowed2DConvolution<PoolingNchwMaxOp,
PoolingNcwMaxOp>;
FailureOr<DepthwiseConv1DNwcWcOp>
DownscaleDepthwiseConv2DNhwcHwcOp::returningMatchAndRewrite(
DepthwiseConv2DNhwcHwcOp convOp, PatternRewriter &rewriter) const {
if (convOp.hasBufferSemantics())
return failure(); // To be implemented.
Value input = convOp.getInputs().front();
Value kernel = convOp.getInputs().back();
Value output = convOp.getOutputs().front();
auto inputType = input.getType().dyn_cast<RankedTensorType>();
auto kernelType = kernel.getType().dyn_cast<RankedTensorType>();
auto outputType = output.getType().dyn_cast<RankedTensorType>();
auto kernelShape = kernelType.getShape();
auto outputShape = outputType.getShape();
// Only handle the case where at least one of the window dimensions is
// of size 1. Other cases can rely on tiling to reduce to such cases.
int64_t khSize = kernelShape[0], kwSize = kernelShape[1];
int64_t ohSize = outputShape[1], owSize = outputShape[2];
bool removeH = (khSize == 1 && ohSize == 1);
bool removeW = (kwSize == 1 && owSize == 1);
if (!removeH && !removeW)
return failure();
// Get new shapes and types for all operands by removing the size-1
// dimension.
using RTTBuilder = RankedTensorType::Builder;
RankedTensorType newInputType =
RTTBuilder(inputType).dropDim((removeH ? 1 : 2));
RankedTensorType newKernelType =
RTTBuilder(kernelType).dropDim((removeH ? 0 : 1));
RankedTensorType newOutputType =
RTTBuilder(outputType).dropDim(removeH ? 1 : 2);
// Rank-reduce operands.
Location loc = convOp.getLoc();
Value newInput = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, input, newInputType);
Value newKernel = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, kernel, newKernelType);
Value newOutput = tensor::createCanonicalRankReducingExtractSliceOp(
rewriter, loc, output, newOutputType);
// Rank-reduce strides and dilations too.
// TODO: dropDim 1-liner helper.
auto strides = llvm::to_vector<4>(convOp.getStrides().getValues<int64_t>());
strides.erase(strides.begin() + (removeH ? 0 : 1));
auto stridesAttr = rewriter.getI64VectorAttr(strides);
auto dilations =
llvm::to_vector<4>(convOp.getDilations().getValues<int64_t>());
dilations.erase(dilations.begin() + (removeH ? 0 : 1));
auto dilationsAttr = rewriter.getI64VectorAttr(dilations);
auto conv1DOp = rewriter.create<DepthwiseConv1DNwcWcOp>(
loc, newOutputType, ValueRange{newInput, newKernel},
ValueRange{newOutput}, stridesAttr, dilationsAttr);
// Insert back.
Value inserted = tensor::createCanonicalRankReducingInsertSliceOp(
rewriter, loc, conv1DOp.getResult(0), output);
rewriter.replaceOp(convOp, inserted);
return conv1DOp;
}
void linalg::populateDecomposeConvolutionPatterns(RewritePatternSet &patterns,
PatternBenefit benefit) {
patterns.add<DownscaleSizeOneWindowed2DConvolution<linalg::Conv2DNhwcHwcfOp,
Conv1DNwcWcfOp>,
DownscaleSizeOneWindowed2DConvolution<linalg::Conv2DNchwFchwOp,
Conv1DNcwFcwOp>,
DownscaleDepthwiseConv2DNhwcHwcOp>(patterns.getContext(),
benefit);
patterns.add<
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcSumOp, PoolingNwcSumOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNchwSumOp, PoolingNcwSumOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMaxOp, PoolingNwcMaxOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMaxUnsignedOp,
PoolingNwcMaxUnsignedOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMinOp, PoolingNwcMinOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNhwcMinUnsignedOp,
PoolingNwcMinUnsignedOp>,
DownscaleSizeOneWindowed2DConvolution<PoolingNchwMaxOp, PoolingNcwMaxOp>>(
patterns.getContext(), benefit);
}
//===----------------------------------------------------------------------===//
// pack transformation.
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
/// Return true if `map` has 0 or 1 result function of AffineDimExpr(dim).
static bool hasAtMostOneResultFunctionOfDim(AffineMap map, int64_t dim) {
bool found = false;
for (AffineExpr e : map.getResults()) {
if (!e.isFunctionOfDim(dim))
continue;
if (found)
return false;
found = true;
}
return true;
}
#endif // NDEBUG
/// Return the index of the first result of `map` that is a function of
/// AffineDimExpr(dim), std::nullopt otherwise.
static std::optional<int64_t> getFirstResultIndexFunctionOf(AffineMap map,
int64_t dim) {
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
AffineExpr expr = map.getResult(i);
if (!expr.isFunctionOfDim(dim))
continue;
return i;
}
return std::nullopt;
}
/// Perform one step of packing of a LinalgOp's metadata along `dim` into the
/// `newDim` at `iteratorTypes.size()` by:
/// 1. Appending `iteratorTypes[newDim]`, equal to `iteratorTypes[dim]`.
/// 2. Appending a `newDim` to the domain of every indexing map.
/// 3. For each operand (i.e. for each map in `indexingMaps`), perform packing
/// by potentially adding a `newDim` result to `map`.
/// The preserved invariant is that `iteratorTypes.size()` is always equal to
/// `map.getNumDims()` for every map in `indexingMaps`.
///
/// Update `indexingMaps` and `iteratorTypes` inplace as one step of the update.
/// Return a vector that records the optional packing for each operand.
/// Return failure if the packed indexing cannot be represented with a LinalgOp.
///
/// Further details:
/// ================
/// The current implementation of packing (i.e. data tiling) consists of
/// rewriting a linearized strip-mined form into a higher-dimensional access.
/// e.g. consider an access `A[I][f(j, k, l)]` and packing by 4; we rewrite
/// `I` into `4 * i + ii`, where `0 <= ii < 4`.
/// The access is further rewritten as `A[i][f(j, k, l)][ii]`.
///
/// This rewrite into higher dimensional access is not possible for general
/// AffineExpr in Linalg atm, it is restricted to an AffineDimExpr:
/// e.g. consider an access `A[I + J][f(j, k, l)]` and packing by 4; we
/// rewrite `I + J` into `4 * i + ii + J`, where `0 <= ii < 4`.
/// The rewrite of the access would be a form not representable in Linalg:
/// `A[i + (ii + J) / 4][f(j, k, l)][(ii + J) % 4]`.
/// Note however that as `J` and `ii` iterate, the accesses do not have a
/// particular alignment, so packing does not achieve alignment in this case
///
/// In the future, we may want to consider a mixed-form that allows some
/// alignment in the presence of multiple accesses:
/// `A[I][f(j, k, l)]` and `B[I + J][f(j, k, l)]`
/// And would rewrite accesses as:
/// `A[i][f(j, k, l)][ii]` and `B[4 * i + ii + J][f(j, k, l)]`
static FailureOr<SmallVector<std::optional<int64_t>>>
packLinalgMetadataOnce(SmallVectorImpl<AffineMap> &indexingMaps,
SmallVectorImpl<utils::IteratorType> &iteratorTypes,
int64_t dim) {
int64_t newDim = iteratorTypes.size();
iteratorTypes.push_back(iteratorTypes[dim]);
SmallVector<std::optional<int64_t>> packedDimPerIndexingMap(
indexingMaps.size(), std::nullopt);
SmallVector<AffineMap> newMaps;
for (int64_t operandIdx = 0, e = indexingMaps.size(); operandIdx < e;
++operandIdx) {
AffineMap map = indexingMaps[operandIdx];
// Add the `newDim` to map whatever the case.
assert(map.getNumDims() == newDim && "num dims invariant violation");
map = map.shiftDims(1, newDim);
// Get the at-most-1 index of the result that is a function of `dim`.
// If we can find one, we insert `AffineDimExpr(newDim)` to the map, which
// logically chunks dimension `dim` into `K * dim + newDim`, where the
// packing factor `K` is specified separately.
assert(hasAtMostOneResultFunctionOfDim(map, dim) &&
"num results invariant violation");
auto maybeOperandDimensionToPack = getFirstResultIndexFunctionOf(map, dim);
if (!maybeOperandDimensionToPack.has_value()) {
newMaps.push_back(map);
continue;
}
// We can only pack AffineDimExpr atm.
if (!map.getResult(maybeOperandDimensionToPack.value())
.isa<AffineDimExpr>())
return failure();
// Add `newDim` to the results of the map.
map = map.insertResult(Builder(map.getContext()).getAffineDimExpr(newDim),
map.getNumResults());
newMaps.push_back(map);
// Record the that `operandIdx` is packed.
packedDimPerIndexingMap[operandIdx] = maybeOperandDimensionToPack;
}
indexingMaps = newMaps;
return packedDimPerIndexingMap;
}
namespace {
/// Helper struct to encode packing along one dimension of a LinalgOp.
struct PackedOperandsDim {
OpFoldResult packedSize;
SmallVector<std::optional<int64_t>> packedDimForEachOperand;
};
/// Helper struct to encode packing along all dimensions of a LinalgOp.
struct PackedOperandsDimList {
void push_back(PackedOperandsDim &&packedOperandsDims) {
spec.emplace_back(packedOperandsDims);
}
/// Return all the dims that have been packed for operand @ `operandPos`.
SmallVector<int64_t> extractPackedDimsForOperand(int64_t operandPos);
/// Return all the pack sizes by which an operand @ `operandPos` is packed.
SmallVector<OpFoldResult> extractPackSizesForOperand(int64_t operandPos);
private:
SmallVector<PackedOperandsDim> spec;
};
} // namespace
SmallVector<int64_t>
PackedOperandsDimList::extractPackedDimsForOperand(int64_t operandPos) {
SmallVector<int64_t> res;
for (int64_t i = 0, e = spec.size(); i < e; ++i) {
if (!spec[i].packedDimForEachOperand[operandPos].has_value())
continue;
res.push_back(spec[i].packedDimForEachOperand[operandPos].value());
}
return res;
}
SmallVector<OpFoldResult>
PackedOperandsDimList::extractPackSizesForOperand(int64_t operandPos) {
SmallVector<OpFoldResult> res;
for (int64_t i = 0, e = spec.size(); i < e; ++i) {
if (!spec[i].packedDimForEachOperand[operandPos].has_value())
continue;
res.push_back(spec[i].packedSize);
}
return res;
}
/// Implement packing of a single LinalgOp by performing packing by
/// `packedSizes`. There must be one packedSizes entry per `linalgOp` iterator.
/// Return the packed Linalg op on success, failure otherwise.
FailureOr<linalg::LinalgOp> linalg::pack(RewriterBase &rewriter,
linalg::LinalgOp linalgOp,
ArrayRef<OpFoldResult> packedSizes) {
if (packedSizes.size() != linalgOp.getNumLoops()) {
return rewriter.notifyMatchFailure(linalgOp,
"incorrect number of pack sizes");
}
Location loc = linalgOp->getLoc();
SmallVector<AffineMap> indexingMaps = linalgOp.getIndexingMapsArray();
SmallVector<utils::IteratorType> iteratorTypes =
linalgOp.getIteratorTypesArray();
LLVM_DEBUG(DBGS() << "Start packing: " << linalgOp << "\n";
llvm::interleaveComma(indexingMaps, DBGS() << "maps: "); DBGSNL();
llvm::interleaveComma(iteratorTypes, DBGS() << "iterators: ");
DBGSNL(););
// Step 1. Pack each dim of the LinalgOp metadata by packedSizes[i].
PackedOperandsDimList listOfPackedOperandsDim;
for (int64_t i = 0, e = packedSizes.size(); i < e; ++i) {
std::optional<int64_t> maybeConstant = getConstantIntValue(packedSizes[i]);
// Skip tile sizes explicitly set to 0.
if (maybeConstant.has_value() && maybeConstant.value() == 0)
continue;
PackedOperandsDim packedOperandsDims;
packedOperandsDims.packedSize = packedSizes[i];
FailureOr<SmallVector<std::optional<int64_t>>>
maybePackedDimForEachOperand =
packLinalgMetadataOnce(indexingMaps, iteratorTypes, i);
if (failed(maybePackedDimForEachOperand))
return failure();
packedOperandsDims.packedDimForEachOperand = *maybePackedDimForEachOperand;
listOfPackedOperandsDim.push_back(std::move(packedOperandsDims));
LLVM_DEBUG(
DBGS() << "++++ After pack size #" << i << ": " << packedSizes[i]
<< "\n";
llvm::interleaveComma(indexingMaps, DBGS() << "maps: "); DBGSNL();
llvm::interleaveComma(iteratorTypes, DBGS() << "iterators: "); DBGSNL();
llvm::interleaveComma(packedOperandsDims.packedDimForEachOperand,
DBGS() << "packedDimForEachOperand: ");
DBGSNL(););
}
// Step 2. Propagate packing to all LinalgOp operands.
SmallVector<Value> inputsAndInits, results;
for (auto operandsList :
{linalgOp.getDpsInputOperands(), linalgOp.getDpsInitOperands()}) {
for (OpOperand *opOperandPtr : operandsList) {
int64_t pos = opOperandPtr->getOperandNumber();
Value operand = opOperandPtr->get();
SmallVector<int64_t> innerPos =
listOfPackedOperandsDim.extractPackedDimsForOperand(pos);
SmallVector<OpFoldResult> innerPackSizes =
listOfPackedOperandsDim.extractPackSizesForOperand(pos);
LLVM_DEBUG(
DBGS() << "operand: " << operand << "\n";
llvm::interleaveComma(innerPos, DBGS() << "innerPos: "); DBGSNL();
llvm::interleaveComma(innerPackSizes, DBGS() << "innerPackSizes: ");
DBGSNL(););
if (innerPackSizes.empty()) {
inputsAndInits.push_back(operand);
continue;
}
Value dest = tensor::PackOp::createDestinationTensor(
rewriter, loc, operand, innerPackSizes, innerPos,
/*outerDimsPerm=*/{});
// TODO: value of the padding attribute should be determined by consumers.
Attribute zeroAttr =
rewriter.getZeroAttr(getElementTypeOrSelf(dest.getType()));
Value zero = rewriter.create<arith::ConstantOp>(loc, zeroAttr);
inputsAndInits.push_back(rewriter.create<tensor::PackOp>(
loc, operand, dest, innerPos, innerPackSizes, zero));
}
}
// Step 3. Build the packed op, use the type of `inits` as result types.
ValueRange inputs =
ValueRange{inputsAndInits}.take_front(linalgOp.getNumDpsInputs());
ValueRange inits =
ValueRange{inputsAndInits}.take_back(linalgOp.getNumDpsInits());
auto packedLinalgOp = rewriter.create<linalg::GenericOp>(
linalgOp.getLoc(), inits.getTypes(), inputs, inits, indexingMaps,
iteratorTypes);
packedLinalgOp.getRegion().takeBody(linalgOp->getRegion(0));
// Step 4. Propagate packing to all the op results.
for (OpResult result : packedLinalgOp->getResults()) {
int64_t resultNum = result.getResultNumber();
tensor::PackOp maybePackedInit =
inits[resultNum].getDefiningOp<tensor::PackOp>();
if (!maybePackedInit) {
results.push_back(result);
continue;
}
// Build the symmetrical UnPackOp to the existing PackOp.
results.push_back(rewriter.create<tensor::UnPackOp>(
packedLinalgOp->getLoc(), result, maybePackedInit.getSource(),
maybePackedInit.getInnerDimsPos(), maybePackedInit.getMixedTiles()));
}
// Step 5. Replace `linalgOp`.
rewriter.replaceOp(linalgOp, results);
// Return packedLinalgOp.
return cast<linalg::LinalgOp>(packedLinalgOp.getOperation());
}
//===----------------------------------------------------------------------===//
// packTranspose transformation.
//===----------------------------------------------------------------------===//
/// Return a copy of `tensorType` after permutation by `permutationVector`.
// Note: Should be a new method in of MemRef/RankedTensor/VectorType::Builder
// but this would introduce a dependence on Dialect in IR.
// TODO: Restructure.
static RankedTensorType permuteShape(RankedTensorType tensorType,
ArrayRef<int64_t> permutationVector) {
SmallVector<int64_t> shape(tensorType.getShape());
applyPermutationToVector(shape, permutationVector);
return RankedTensorType::Builder(tensorType).setShape(shape);
}
/// Return a new GenericOp obtained by transposing opOperand by the permutation
/// vector:
/// - the corresponding indexing map is transposed by `permutation`
/// - the corresponding operand value is replaced by `transposedValue`
/// `linalgOp` is replaced by the return op in the process.
/// Asserts that `transposedValue` is of the proper transposed ShapedType.
static LinalgOp transposeOneLinalgOperandAndReplace(
RewriterBase &rewriter, LinalgOp linalgOp, OpOperand &opOperand,
ArrayRef<int64_t> permutation, Value transposedValue) {
// Sanity check the operand.
assert(linalgOp == opOperand.getOwner() && "linalg op must own the operand");
// Sanity check of the expected transposed tensor type.
auto tensorType = permuteShape(
opOperand.get().getType().cast<RankedTensorType>(), permutation);
(void)tensorType;
assert(tensorType == transposedValue.getType() &&
"expected tensor type mismatch");
// Compute the transposed indexing map.
// Sigh unsigned pollution.
SmallVector<unsigned> tmpTransposition = llvm::to_vector(
llvm::map_range(permutation, [](int64_t i) -> unsigned { return i; }));
AffineMap permutationMap =
AffineMap::getPermutationMap(tmpTransposition, rewriter.getContext());
AffineMap transposedMap =
permutationMap.compose(linalgOp.getMatchingIndexingMap(&opOperand));
// Set the transposed indexing map in the proper position.
SmallVector<AffineMap> indexingMaps = linalgOp.getIndexingMapsArray();
indexingMaps[linalgOp.getIndexingMapIndex(&opOperand)] = transposedMap;
// Set the transposedValue in the proper operand position.
SmallVector<Value> operands = linalgOp->getOperands();
operands[opOperand.getOperandNumber()] = transposedValue;
ValueRange operandsRef(operands);
auto transposedGenericOp = rewriter.create<linalg::GenericOp>(
/*location=*/linalgOp->getLoc(),
/*resultTensorTypes=*/
operandsRef.drop_front(linalgOp.getNumDpsInputs()).getTypes(),
/*inputs=*/operandsRef.take_front(linalgOp.getNumDpsInputs()),
/*outputs=*/operandsRef.drop_front(linalgOp.getNumDpsInputs()),
/*indexingMaps=*/indexingMaps,
/*iteratorTypes=*/linalgOp.getIteratorTypesArray());
transposedGenericOp.getRegion().takeBody(linalgOp->getRegion(0));
rewriter.replaceOp(linalgOp, transposedGenericOp->getResults());
return cast<linalg::LinalgOp>(transposedGenericOp.getOperation());
}
FailureOr<PackTransposeResult>
linalg::packTranspose(RewriterBase &rewriter, tensor::PackOp packOp,
linalg::LinalgOp linalgOp, tensor::UnPackOp maybeUnPackOp,
ArrayRef<int64_t> outerPerm,
ArrayRef<int64_t> innerPerm) {
Location loc = linalgOp.getLoc();
// Step 1. Transpose packOp.
rewriter.setInsertionPoint(packOp);
tensor::PackOp transposedPackOp =
packOp.createTransposedClone(rewriter, loc, innerPerm, outerPerm);
if (!packOp.getResult().hasOneUse())
return rewriter.notifyMatchFailure(linalgOp, "expect single pack use");
OpOperand &packUse = *packOp->getUses().begin();
if (packUse.getOwner() != linalgOp) {
return rewriter.notifyMatchFailure(
linalgOp, "not a single use by the LinalgOp target");
}
if (maybeUnPackOp &&
(!linalgOp.isDpsInit(&packUse) ||
maybeUnPackOp.getSource() != linalgOp.getTiedOpResult(&packUse))) {
return rewriter.notifyMatchFailure(linalgOp,
"not produced by the LinalgOp target");
}
// Step 2. Transpose linalgOp.
// transposedPackOp.getOuterDimsPerm() may be empty, in which case it is the
// identity. Don't rely on it.
int64_t numLeadingDims = packOp.getSourceRank();
int64_t numTrailingDims = packOp.getInnerDimsPos().size();
// Step 2.a. Compute the permutation on the whole operand.
// Leading part just reuse the outerPerm.
SmallVector<int64_t> permutation(outerPerm);
if (permutation.empty())
llvm::append_range(permutation, llvm::seq<int64_t>(0, numLeadingDims));
// Trailing part needs to reindex positions by `numLeadingDims`.
if (innerPerm.empty()) {
llvm::append_range(
permutation,
llvm::seq<int64_t>(numLeadingDims, numLeadingDims + numTrailingDims));
} else {
llvm::append_range(permutation,
llvm::map_range(innerPerm, [&](int64_t pos) {
return numLeadingDims + pos;
}));
}
if (!isPermutationVector(permutation))
return rewriter.notifyMatchFailure(linalgOp, "invalid permutation");
// Step 2.b. Save the transposedPackUse operand number in case we need to
// get the tied OpResult after `linalgOp` has been replaced.
int64_t packUseOperandNumber = packUse.getOperandNumber();
// Step 2.c. Actually perform the transposition.
rewriter.setInsertionPoint(linalgOp);
linalg::LinalgOp transposedLinalgOp = transposeOneLinalgOperandAndReplace(
rewriter, linalgOp, packUse, permutation, transposedPackOp.getResult());
// Step 3. Maybe transpose unPackOp.
tensor::UnPackOp transposedUnPackOp;
if (maybeUnPackOp) {
OpOperand &opOperand =
transposedLinalgOp->getOpOperand(packUseOperandNumber);
OpResult transposedResult = transposedLinalgOp.getTiedOpResult(&opOperand);
rewriter.setInsertionPoint(maybeUnPackOp);
transposedUnPackOp = maybeUnPackOp.createTransposedClone(
rewriter, loc, transposedResult, innerPerm, outerPerm);
rewriter.replaceOp(maybeUnPackOp, transposedUnPackOp->getResults());
}
// Step 4. Finally, replace packOp now that we don't need it anymore.
rewriter.replaceOp(packOp, transposedPackOp->getResults());
return PackTransposeResult{transposedPackOp, transposedLinalgOp,
transposedUnPackOp};
}
|