1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
//===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Shape/Transforms/BufferizableOpInterfaceImpl.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Shape/IR/Shape.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
using namespace mlir;
using namespace mlir::bufferization;
using namespace mlir::shape;
namespace mlir {
namespace shape {
namespace {
/// Bufferization of shape.assuming.
struct AssumingOpInterface
: public BufferizableOpInterface::ExternalModel<AssumingOpInterface,
shape::AssumingOp> {
SmallVector<OpOperand *>
getAliasingOpOperand(Operation *op, OpResult opResult,
const AnalysisState &state) const {
// AssumingOps do not have tensor OpOperands. The yielded value can be any
// SSA value that is in scope. To allow for use-def chain traversal through
// AssumingOps in the analysis, the corresponding yield value is considered
// to be aliasing with the result.
auto assumingOp = cast<shape::AssumingOp>(op);
size_t resultNum = std::distance(op->getOpResults().begin(),
llvm::find(op->getOpResults(), opResult));
// TODO: Support multiple blocks.
assert(assumingOp.getDoRegion().getBlocks().size() == 1 &&
"expected exactly 1 block");
auto yieldOp = dyn_cast<shape::AssumingYieldOp>(
assumingOp.getDoRegion().front().getTerminator());
assert(yieldOp && "expected shape.assuming_yield terminator");
return {&yieldOp->getOpOperand(resultNum)};
}
// TODO: For better bufferization results, this could return `true` only if
// there is a memory write in the region.
bool isMemoryWrite(Operation *op, OpResult opResult,
const AnalysisState &state) const {
// Similar to scf.if, results of this op are always considered memory writes
// in the analysis. This is a useful pattern for all ops that have tensor
// OpResults but no tensor OpOperands. By default, `isMemoryWrite` is
// implemented in terms of `bufferizesToMemoryWrite`, which does not work on
// ops without OpOperands.
return true;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto assumingOp = cast<shape::AssumingOp>(op);
assert(assumingOp.getDoRegion().getBlocks().size() == 1 &&
"only 1 block supported");
auto yieldOp = cast<shape::AssumingYieldOp>(
assumingOp.getDoRegion().front().getTerminator());
// Create new op and move over region.
TypeRange newResultTypes(yieldOp.getOperands());
auto newOp = rewriter.create<shape::AssumingOp>(
op->getLoc(), newResultTypes, assumingOp.getWitness());
newOp.getDoRegion().takeBody(assumingOp.getRegion());
// Update all uses of the old op.
rewriter.setInsertionPointAfter(newOp);
SmallVector<Value> newResults;
for (const auto &it : llvm::enumerate(assumingOp->getResultTypes())) {
if (it.value().isa<TensorType>()) {
newResults.push_back(rewriter.create<bufferization::ToTensorOp>(
assumingOp.getLoc(), newOp->getResult(it.index())));
} else {
newResults.push_back(newOp->getResult(it.index()));
}
}
// Replace old op.
rewriter.replaceOp(assumingOp, newResults);
return success();
}
BufferRelation bufferRelation(Operation *op, OpResult opResult,
const AnalysisState &state) const {
return BufferRelation::Equivalent;
}
};
/// Bufferization of shape.assuming_yield. Bufferized as part of their enclosing
/// ops, so this is for analysis only.
struct AssumingYieldOpInterface
: public BufferizableOpInterface::ExternalModel<AssumingYieldOpInterface,
shape::AssumingYieldOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return true;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
assert(isa<shape::AssumingOp>(op->getParentOp()) &&
"expected that parent is an AssumingOp");
return {op->getParentOp()->getResult(opOperand.getOperandNumber())};
}
bool mustBufferizeInPlace(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
// Yield operands always bufferize inplace. Otherwise, an alloc + copy
// may be generated inside the block. We should not return/yield allocations
// when possible.
return true;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto yieldOp = cast<shape::AssumingYieldOp>(op);
SmallVector<Value> newResults;
for (Value value : yieldOp.getOperands()) {
if (value.getType().isa<TensorType>()) {
FailureOr<Value> buffer = getBuffer(rewriter, value, options);
if (failed(buffer))
return failure();
newResults.push_back(*buffer);
} else {
newResults.push_back(value);
}
}
replaceOpWithNewBufferizedOp<shape::AssumingYieldOp>(rewriter, op,
newResults);
return success();
}
};
} // namespace
} // namespace shape
} // namespace mlir
void mlir::shape::registerBufferizableOpInterfaceExternalModels(
DialectRegistry ®istry) {
registry.addExtension(+[](MLIRContext *ctx, shape::ShapeDialect *dialect) {
shape::AssumingOp::attachInterface<AssumingOpInterface>(*ctx);
shape::AssumingYieldOp::attachInterface<AssumingYieldOpInterface>(*ctx);
});
}
|