1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
|
//===- StructuredOpsUtils.cpp - Utilities used by structured ops ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/Dialect/Utils/DialectUtilsEnums.cpp.inc"
using namespace mlir;
bool mlir::isRowMajorMatmul(ArrayAttr indexingMaps) {
if (indexingMaps.size() != 3)
return false;
auto map0 = indexingMaps[0].cast<AffineMapAttr>().getValue();
auto map1 = indexingMaps[1].cast<AffineMapAttr>().getValue();
auto map2 = indexingMaps[2].cast<AffineMapAttr>().getValue();
if (map0.getNumResults() != 2 || map1.getNumResults() != 2 ||
map2.getNumResults() != 2 || map0.getNumInputs() != 3 ||
map1.getNumInputs() != 3 || map2.getNumInputs() != 3) {
return false;
}
// Extract dimensions for MxK * KxN -> MxN
AffineExpr m = map2.getResult(0);
AffineExpr n = map2.getResult(1);
AffineExpr k = map0.getResult(1);
auto *context = indexingMaps.getContext();
auto mapA = AffineMapAttr::get(AffineMap::get(3, 0, {m, k}, context));
auto mapB = AffineMapAttr::get(AffineMap::get(3, 0, {k, n}, context));
auto mapC = AffineMapAttr::get(AffineMap::get(3, 0, {m, n}, context));
auto maps = ArrayAttr::get(context, {mapA, mapB, mapC});
return indexingMaps == maps;
}
bool mlir::isColumnMajorMatmul(ArrayAttr indexingMaps) {
if (indexingMaps.size() != 3)
return false;
auto map0 = indexingMaps[0].cast<AffineMapAttr>().getValue();
auto map1 = indexingMaps[1].cast<AffineMapAttr>().getValue();
auto map2 = indexingMaps[2].cast<AffineMapAttr>().getValue();
if (map0.getNumResults() != 2 || map1.getNumResults() != 2 ||
map2.getNumResults() != 2 || map0.getNumInputs() != 3 ||
map1.getNumInputs() != 3 || map2.getNumInputs() != 3) {
return false;
}
// Extract dimensions for KxM * NxK -> NxM
AffineExpr n = map2.getResult(0);
AffineExpr m = map2.getResult(1);
AffineExpr k = map0.getResult(0);
auto *context = indexingMaps.getContext();
auto mapA = AffineMapAttr::get(AffineMap::get(3, 0, {k, m}, context));
auto mapB = AffineMapAttr::get(AffineMap::get(3, 0, {n, k}, context));
auto mapC = AffineMapAttr::get(AffineMap::get(3, 0, {n, m}, context));
auto maps = ArrayAttr::get(context, {mapA, mapB, mapC});
return indexingMaps == maps;
}
bool mlir::isRowMajorBatchMatmul(ArrayAttr indexingMaps) {
if (indexingMaps.size() != 3)
return false;
auto map0 = indexingMaps[0].cast<AffineMapAttr>().getValue();
auto map1 = indexingMaps[1].cast<AffineMapAttr>().getValue();
auto map2 = indexingMaps[2].cast<AffineMapAttr>().getValue();
if (map0.getNumResults() != 3 || map1.getNumResults() != 3 ||
map2.getNumResults() != 3 || map0.getNumInputs() != 4 ||
map1.getNumInputs() != 4 || map2.getNumInputs() != 4) {
return false;
}
// Extract dimensions for BxMxK * BxKxN -> BxMxN
AffineExpr b = map2.getResult(0);
AffineExpr m = map2.getResult(1);
AffineExpr n = map2.getResult(2);
AffineExpr k = map0.getResult(2);
auto *context = indexingMaps.getContext();
auto mapA = AffineMapAttr::get(AffineMap::get(4, 0, {b, m, k}, context));
auto mapB = AffineMapAttr::get(AffineMap::get(4, 0, {b, k, n}, context));
auto mapC = AffineMapAttr::get(AffineMap::get(4, 0, {b, m, n}, context));
auto maps = ArrayAttr::get(context, {mapA, mapB, mapC});
return indexingMaps == maps;
}
Operation *mlir::clone(OpBuilder &b, Operation *op, TypeRange newResultTypes,
ValueRange newOperands) {
IRMapping bvm;
OperationState state(op->getLoc(), op->getName(), newOperands, newResultTypes,
op->getAttrs());
for (Region &r : op->getRegions())
r.cloneInto(state.addRegion(), bvm);
return b.create(state);
}
Operation *mlir::cloneWithoutRegions(OpBuilder &b, Operation *op,
TypeRange newResultTypes,
ValueRange newOperands) {
OperationState state(op->getLoc(), op->getName(), newOperands, newResultTypes,
op->getAttrs());
for (size_t cnt = 0, e = op->getNumRegions(); cnt < e; ++cnt)
state.addRegion();
return b.create(state);
}
|