File: transform-op-decompose.mlir

package info (click to toggle)
llvm-toolchain-16 1%3A16.0.6-15~deb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,634,792 kB
  • sloc: cpp: 6,179,261; ansic: 1,216,205; asm: 741,319; python: 196,614; objc: 75,325; f90: 49,640; lisp: 32,396; pascal: 12,286; sh: 9,394; perl: 7,442; ml: 5,494; awk: 3,523; makefile: 2,723; javascript: 1,206; xml: 886; fortran: 581; cs: 573
file content (189 lines) | stat: -rw-r--r-- 10,092 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
// RUN: mlir-opt --test-transform-dialect-interpreter --split-input-file %s | FileCheck %s

// CHECK-LABEL: @conv_2d_nhwc_hwcf
// CHECK-SAME: %[[ARG0:.+]]: tensor<?x1x?x?xf32>,
// CHECK-SAME: %[[ARG1:.+]]: tensor<1x?x?x?xf32>
// CHECK-SAME: %[[ARG2:.+]]: tensor<?x1x?x?xf32>
func.func @conv_2d_nhwc_hwcf(%input: tensor<?x1x?x?xf32>, %filter: tensor<1x?x?x?xf32>, %init: tensor<?x1x?x?xf32>) -> tensor<?x1x?x?xf32> {
  // CHECK: %[[SLICE0:.+]] = tensor.extract_slice %[[ARG0]]
  // CHECK: %[[SLICE1:.+]] = tensor.extract_slice %[[ARG1]]
  // CHECK: %[[SLICE2:.+]] = tensor.extract_slice %[[ARG2]]
  // CHECK: %[[SLICERES:.+]] = linalg.conv_1d_nwc_wcf
  // CHECK: %[[RES:.+]] = tensor.insert_slice %[[SLICERES]] into %[[ARG2]]
  %0 = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>,
                                 strides = dense<1> : tensor<2xi64>}
     ins (%input, %filter: tensor<?x1x?x?xf32>, tensor<1x?x?x?xf32>)
    outs (%init: tensor<?x1x?x?xf32>) -> tensor<?x1x?x?xf32>
  // CHECK: return %[[RES]]
  return %0 : tensor<?x1x?x?xf32>
}

// CHECK-LABEL: @conv_2d_nchw_fchw
// CHECK-SAME: (%[[ARG0:[0-9a-z]+]]: tensor<?x?x1x?xf32>,
// CHECK-SAME: %[[ARG1:[0-9a-z]+]]: tensor<?x?x1x?xf32>,
// CHECK-SAME: %[[ARG2:[0-9a-z]+]]: tensor<?x?x1x?xf32>)
func.func @conv_2d_nchw_fchw(%input: tensor<?x?x1x?xf32>, %filter: tensor<?x?x1x?xf32>, %init: tensor<?x?x1x?xf32>) -> tensor<?x?x1x?xf32> {
  // CHECK: %[[SLICE0:.+]] = tensor.extract_slice %[[ARG0]]
  // CHECK: %[[SLICE1:.+]] = tensor.extract_slice %[[ARG1]]
  // CHECK: %[[SLICE2:.+]] = tensor.extract_slice %[[ARG2]]
  // CHECK: %[[SLICERES:.+]] = linalg.conv_1d_ncw_fcw
  // CHECK: %[[RES:.+]] = tensor.insert_slice %[[SLICERES]] into %[[ARG2]]
  %0 = linalg.conv_2d_nchw_fchw {dilations = dense<1> : tensor<2xi64>,
                                 strides = dense<1> : tensor<2xi64>}
     ins (%input, %filter: tensor<?x?x1x?xf32>, tensor<?x?x1x?xf32>)
    outs (%init: tensor<?x?x1x?xf32>) -> tensor<?x?x1x?xf32>
  // CHECK: return %[[RES]]
  return %0 : tensor<?x?x1x?xf32>
}

// CHECK-LABEL: @depthwise_conv_2d_nhwc_hwc
// CHECK-SAME: %[[ARG0:.+]]: tensor<1x1x113x96xf32>
// CHECK-SAME: %[[ARG1:.+]]: tensor<1x3x96xf32>
func.func @depthwise_conv_2d_nhwc_hwc(%input: tensor<1x1x113x96xf32>, %filter: tensor<1x3x96xf32>) -> tensor<1x1x56x96xf32> {
  // CHECK: %[[RES:.+]] = tensor.empty
  %init = tensor.empty() : tensor<1x1x56x96xf32>
  // CHECK: %[[SLICE0:.+]] = tensor.extract_slice %[[ARG0]]
  // CHECK: %[[SLICE1:.+]] = tensor.extract_slice %[[ARG1]]
  // CHECK: %[[SLICERES:.+]] = tensor.extract_slice %[[RES]]
  // CHECK: %[[OPRES:.+]] = linalg.depthwise_conv_1d_nwc_wc
  // CHECK-SAME: ins(%[[SLICE0]], %[[SLICE1]]
  // CHECK-SAME: outs(%[[SLICERES]]
  // CHECK: %[[INSERTED:.+]] = tensor.insert_slice %[[OPRES]] into %[[RES]]
  %0 = linalg.depthwise_conv_2d_nhwc_hwc {dilations = dense<1> : vector<2xi64>, strides = dense<2> : vector<2xi64>}
         ins(%input, %filter: tensor<1x1x113x96xf32>, tensor<1x3x96xf32>)
         outs(%init: tensor<1x1x56x96xf32>) -> tensor<1x1x56x96xf32>
  // CHECK: %[[INSERTED]]
  return %0: tensor<1x1x56x96xf32>
}

// CHECK-LABEL: @pooling_nhwc_sum
// CHECK-SAME: %[[ARG0:.+]]: tensor<?x1x?x?xf32>,
// CHECK-SAME: %[[ARG1:.+]]: tensor<1x?xf32>
// CHECK-SAME: %[[ARG2:.+]]: tensor<?x1x?x?xf32>
func.func @pooling_nhwc_sum(%input: tensor<?x1x?x?xf32>, %filter: tensor<1x?xf32>, %init: tensor<?x1x?x?xf32>) -> tensor<?x1x?x?xf32> {
  // CHECK: %[[SLICE0:.+]] = tensor.extract_slice %[[ARG0]]
  // CHECK: %[[SLICE1:.+]] = tensor.extract_slice %[[ARG1]]
  // CHECK: %[[SLICE2:.+]] = tensor.extract_slice %[[ARG2]]
  // CHECK: %[[SLICERES:.+]] = linalg.pooling_nwc_sum
  // CHECK: %[[RES:.+]] = tensor.insert_slice %[[SLICERES]] into %[[ARG2]]
  %0 = linalg.pooling_nhwc_sum {dilations = dense<1> : tensor<2xi64>,
                                strides = dense<1> : tensor<2xi64>}
     ins (%input, %filter: tensor<?x1x?x?xf32>, tensor<1x?xf32>)
    outs (%init: tensor<?x1x?x?xf32>) -> tensor<?x1x?x?xf32>
  // CHECK: return %[[RES]]
  return %0 : tensor<?x1x?x?xf32>
}

// CHECK-LABEL: @pooling_nchw_sum
// CHECK-SAME: (%[[ARG0:[0-9a-z]+]]: tensor<?x?x1x?xf32>,
// CHECK-SAME: %[[ARG1:[0-9a-z]+]]: tensor<1x?xf32>,
// CHECK-SAME: %[[ARG2:[0-9a-z]+]]: tensor<?x?x1x?xf32>)
func.func @pooling_nchw_sum(%input: tensor<?x?x1x?xf32>, %filter: tensor<1x?xf32>, %init: tensor<?x?x1x?xf32>) -> tensor<?x?x1x?xf32> {
  // CHECK: %[[SLICE0:.+]] = tensor.extract_slice %[[ARG0]]
  // CHECK: %[[SLICE1:.+]] = tensor.extract_slice %[[ARG1]]
  // CHECK: %[[SLICE2:.+]] = tensor.extract_slice %[[ARG2]]
  // CHECK: %[[SLICERES:.+]] = linalg.pooling_ncw_sum
  // CHECK: %[[RES:.+]] = tensor.insert_slice %[[SLICERES]] into %[[ARG2]]
  %0 = linalg.pooling_nchw_sum {dilations = dense<1> : tensor<2xi64>,
                                strides = dense<1> : tensor<2xi64>}
     ins (%input, %filter: tensor<?x?x1x?xf32>, tensor<1x?xf32>)
    outs (%init: tensor<?x?x1x?xf32>) -> tensor<?x?x1x?xf32>
  // CHECK: return %[[RES]]
  return %0 : tensor<?x?x1x?xf32>
}

// CHECK-LABEL: @pooling_nhwc_max
// CHECK-SAME: %[[ARG0:.+]]: tensor<?x1x?x?xf32>,
// CHECK-SAME: %[[ARG1:.+]]: tensor<1x?xf32>
// CHECK-SAME: %[[ARG2:.+]]: tensor<?x1x?x?xf32>
func.func @pooling_nhwc_max(%input: tensor<?x1x?x?xf32>, %filter: tensor<1x?xf32>, %init: tensor<?x1x?x?xf32>) -> tensor<?x1x?x?xf32> {
  // CHECK: %[[SLICE0:.+]] = tensor.extract_slice %[[ARG0]]
  // CHECK: %[[SLICE1:.+]] = tensor.extract_slice %[[ARG1]]
  // CHECK: %[[SLICE2:.+]] = tensor.extract_slice %[[ARG2]]
  // CHECK: %[[SLICERES:.+]] = linalg.pooling_nwc_max
  // CHECK: %[[RES:.+]] = tensor.insert_slice %[[SLICERES]] into %[[ARG2]]
  %0 = linalg.pooling_nhwc_max {dilations = dense<1> : tensor<2xi64>,
                                strides = dense<1> : tensor<2xi64>}
     ins (%input, %filter: tensor<?x1x?x?xf32>, tensor<1x?xf32>)
    outs (%init: tensor<?x1x?x?xf32>) -> tensor<?x1x?x?xf32>
  // CHECK: return %[[RES]]
  return %0 : tensor<?x1x?x?xf32>
}

// CHECK-LABEL: @pooling_nhwc_max_unsigned
// CHECK-SAME: %[[ARG0:.+]]: tensor<?x1x?x?xf32>,
// CHECK-SAME: %[[ARG1:.+]]: tensor<1x?xf32>
// CHECK-SAME: %[[ARG2:.+]]: tensor<?x1x?x?xf32>
func.func @pooling_nhwc_max_unsigned(%input: tensor<?x1x?x?xf32>, %filter: tensor<1x?xf32>, %init: tensor<?x1x?x?xf32>) -> tensor<?x1x?x?xf32> {
  // CHECK: %[[SLICE0:.+]] = tensor.extract_slice %[[ARG0]]
  // CHECK: %[[SLICE1:.+]] = tensor.extract_slice %[[ARG1]]
  // CHECK: %[[SLICE2:.+]] = tensor.extract_slice %[[ARG2]]
  // CHECK: %[[SLICERES:.+]] = linalg.pooling_nwc_max_unsigned
  // CHECK: %[[RES:.+]] = tensor.insert_slice %[[SLICERES]] into %[[ARG2]]
  %0 = linalg.pooling_nhwc_max_unsigned {dilations = dense<1> : tensor<2xi64>,
                                strides = dense<1> : tensor<2xi64>}
     ins (%input, %filter: tensor<?x1x?x?xf32>, tensor<1x?xf32>)
    outs (%init: tensor<?x1x?x?xf32>) -> tensor<?x1x?x?xf32>
  // CHECK: return %[[RES]]
  return %0 : tensor<?x1x?x?xf32>
}

// CHECK-LABEL: @pooling_nhwc_min
// CHECK-SAME: %[[ARG0:.+]]: tensor<?x1x?x?xf32>,
// CHECK-SAME: %[[ARG1:.+]]: tensor<1x?xf32>
// CHECK-SAME: %[[ARG2:.+]]: tensor<?x1x?x?xf32>
func.func @pooling_nhwc_min(%input: tensor<?x1x?x?xf32>, %filter: tensor<1x?xf32>, %init: tensor<?x1x?x?xf32>) -> tensor<?x1x?x?xf32> {
  // CHECK: %[[SLICE0:.+]] = tensor.extract_slice %[[ARG0]]
  // CHECK: %[[SLICE1:.+]] = tensor.extract_slice %[[ARG1]]
  // CHECK: %[[SLICE2:.+]] = tensor.extract_slice %[[ARG2]]
  // CHECK: %[[SLICERES:.+]] = linalg.pooling_nwc_min
  // CHECK: %[[RES:.+]] = tensor.insert_slice %[[SLICERES]] into %[[ARG2]]
  %0 = linalg.pooling_nhwc_min {dilations = dense<1> : tensor<2xi64>,
                                strides = dense<1> : tensor<2xi64>}
     ins (%input, %filter: tensor<?x1x?x?xf32>, tensor<1x?xf32>)
    outs (%init: tensor<?x1x?x?xf32>) -> tensor<?x1x?x?xf32>
  // CHECK: return %[[RES]]
  return %0 : tensor<?x1x?x?xf32>
}

// CHECK-LABEL: @pooling_nhwc_min_unsigned
// CHECK-SAME: %[[ARG0:.+]]: tensor<?x1x?x?xf32>,
// CHECK-SAME: %[[ARG1:.+]]: tensor<1x?xf32>
// CHECK-SAME: %[[ARG2:.+]]: tensor<?x1x?x?xf32>
func.func @pooling_nhwc_min_unsigned(%input: tensor<?x1x?x?xf32>, %filter: tensor<1x?xf32>, %init: tensor<?x1x?x?xf32>) -> tensor<?x1x?x?xf32> {
  // CHECK: %[[SLICE0:.+]] = tensor.extract_slice %[[ARG0]]
  // CHECK: %[[SLICE1:.+]] = tensor.extract_slice %[[ARG1]]
  // CHECK: %[[SLICE2:.+]] = tensor.extract_slice %[[ARG2]]
  // CHECK: %[[SLICERES:.+]] = linalg.pooling_nwc_min_unsigned
  // CHECK: %[[RES:.+]] = tensor.insert_slice %[[SLICERES]] into %[[ARG2]]
  %0 = linalg.pooling_nhwc_min_unsigned {dilations = dense<1> : tensor<2xi64>,
                                strides = dense<1> : tensor<2xi64>}
     ins (%input, %filter: tensor<?x1x?x?xf32>, tensor<1x?xf32>)
    outs (%init: tensor<?x1x?x?xf32>) -> tensor<?x1x?x?xf32>
  // CHECK: return %[[RES]]
  return %0 : tensor<?x1x?x?xf32>
}

// CHECK-LABEL: @pooling_nchw_max
// CHECK-SAME: (%[[ARG0:[0-9a-z]+]]: tensor<?x?x1x?xf32>,
// CHECK-SAME: %[[ARG1:[0-9a-z]+]]: tensor<1x?xf32>,
// CHECK-SAME: %[[ARG2:[0-9a-z]+]]: tensor<?x?x1x?xf32>)
func.func @pooling_nchw_max(%input: tensor<?x?x1x?xf32>, %filter: tensor<1x?xf32>, %init: tensor<?x?x1x?xf32>) -> tensor<?x?x1x?xf32> {
  // CHECK: %[[SLICE0:.+]] = tensor.extract_slice %[[ARG0]]
  // CHECK: %[[SLICE1:.+]] = tensor.extract_slice %[[ARG1]]
  // CHECK: %[[SLICE2:.+]] = tensor.extract_slice %[[ARG2]]
  // CHECK: %[[SLICERES:.+]] = linalg.pooling_ncw_max
  // CHECK: %[[RES:.+]] = tensor.insert_slice %[[SLICERES]] into %[[ARG2]]
  %0 = linalg.pooling_nchw_max {dilations = dense<1> : tensor<2xi64>,
                                strides = dense<1> : tensor<2xi64>}
     ins (%input, %filter: tensor<?x?x1x?xf32>, tensor<1x?xf32>)
    outs (%init: tensor<?x?x1x?xf32>) -> tensor<?x?x1x?xf32>
  // CHECK: return %[[RES]]
  return %0 : tensor<?x?x1x?xf32>
}

transform.sequence failures(propagate) {
^bb1(%arg1: !pdl.operation):
  %0 = transform.structured.match interface{LinalgOp} in %arg1
  %1 = transform.structured.decompose %0
}