1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
|
// RUN: mlir-opt --test-transform-dialect-interpreter --split-input-file --verify-diagnostics %s | FileCheck %s
transform.sequence failures(propagate) {
^bb0(%arg1: !pdl.operation):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1
%1, %loops:3 = transform.structured.tile %0 [4, 4, 4] : (!pdl.operation) -> (!pdl.operation, !pdl.operation, !pdl.operation, !pdl.operation)
}
// CHECK-LABEL: func @tile_linalg_matmul(
// CHECK-SAME: %[[TA:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME: %[[TB:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME: %[[TC:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME: -> tensor<128x128xf32> {
func.func @tile_linalg_matmul(
%arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>)
-> tensor<128x128xf32> {
// CHECK: %[[TD0:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC0:.*]] = %[[TC]]) -> (tensor<128x128xf32>) {
// CHECK: %[[TD1:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC1:.*]] = %[[TC0]]) -> (tensor<128x128xf32>) {
// CHECK: %[[TD2:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC2:.*]] = %[[TC1]]) -> (tensor<128x128xf32>) {
// CHECK: %[[sTA:.*]] = tensor.extract_slice %[[TA]][{{.*}}] : tensor<128x128xf32> to tensor<4x4xf32>
// CHECK: %[[sTB:.*]] = tensor.extract_slice %[[TB]][{{.*}}] : tensor<128x128xf32> to tensor<4x4xf32>
// CHECK: %[[sTC:.*]] = tensor.extract_slice %[[TC2]][{{.*}}] : tensor<128x128xf32> to tensor<4x4xf32>
// CHECK: %[[sTD:.*]] = linalg.matmul ins(%[[sTA]], %[[sTB]] : tensor<4x4xf32>, tensor<4x4xf32>)
// CHECK-SAME: outs(%[[sTC]] : tensor<4x4xf32>) -> tensor<4x4xf32>
// CHECK: %[[TD:.*]] = tensor.insert_slice %[[sTD]] into %[[TC2]][{{.*}}] : tensor<4x4xf32> into tensor<128x128xf32>
// CHECK: scf.yield %[[TD]] : tensor<128x128xf32>
// CHECK: scf.yield %[[TD2]] : tensor<128x128xf32>
// CHECK: scf.yield %[[TD1]] : tensor<128x128xf32>
%0 = linalg.matmul ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
// CHECK: return %[[TD0]] : tensor<128x128xf32>
return %0 : tensor<128x128xf32>
}
// -----
transform.sequence failures(propagate) {
^bb0(%arg1: !pdl.operation):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1
%1 = transform.structured.match ops{["func.call"]} in %arg1
%2, %loops:3 = transform.structured.tile %0 [%1, %1, 4] : (!pdl.operation, !pdl.operation, !pdl.operation) -> (!pdl.operation, !pdl.operation, !pdl.operation, !pdl.operation)
}
func.func private @get_dynamic_tile_size() -> index
// CHECK-LABEL: func @tile_linalg_matmul_dynamic(
// CHECK-SAME: %[[TA:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME: %[[TB:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME: %[[TC:[0-9a-z]+]]: tensor<128x128xf32>
// CHECK-SAME: -> tensor<128x128xf32> {
func.func @tile_linalg_matmul_dynamic(
%arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>)
-> tensor<128x128xf32> {
// CHECK: %[[TD0:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC0:.*]] = %[[TC]]) -> (tensor<128x128xf32>) {
// CHECK: %[[TD1:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC1:.*]] = %[[TC0]]) -> (tensor<128x128xf32>) {
// CHECK: %[[TD2:.*]] = scf.for {{.*}} to {{.*}} step {{.*}} iter_args(%[[TC2:.*]] = %[[TC1]]) -> (tensor<128x128xf32>) {
// CHECK: %[[sTA:.*]] = tensor.extract_slice %[[TA]][{{.*}}] : tensor<128x128xf32> to tensor<?x4xf32>
// CHECK: %[[sTB:.*]] = tensor.extract_slice %[[TB]][{{.*}}] : tensor<128x128xf32> to tensor<4x?xf32>
// CHECK: %[[sTC:.*]] = tensor.extract_slice %[[TC2]][{{.*}}] : tensor<128x128xf32> to tensor<?x?xf32>
// CHECK: %[[sTD:.*]] = linalg.matmul ins(%[[sTA]], %[[sTB]] : tensor<?x4xf32>, tensor<4x?xf32>)
// CHECK-SAME: outs(%[[sTC]] : tensor<?x?xf32>) -> tensor<?x?xf32>
// CHECK: %[[TD:.*]] = tensor.insert_slice %[[sTD]] into %[[TC2]][{{.*}}] : tensor<?x?xf32> into tensor<128x128xf32>
// CHECK: scf.yield %[[TD]] : tensor<128x128xf32>
// CHECK: scf.yield %[[TD2]] : tensor<128x128xf32>
// CHECK: scf.yield %[[TD1]] : tensor<128x128xf32>
%sz = func.call @get_dynamic_tile_size() : () -> index
%0 = linalg.matmul ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
// CHECK: return %[[TD0]] : tensor<128x128xf32>
return %0 : tensor<128x128xf32>
}
// -----
transform.sequence failures(propagate) {
^bb0(%arg1: !pdl.operation):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1
// expected-note @below {{for this parameter}}
%1 = transform.test_produce_integer_param_with_type i64 : !transform.param<i64>
// expected-error @below {{expected as many parameter values (0) as target ops (2)}}
transform.structured.tile %0 [%1, %1, %1]
: (!pdl.operation, !transform.param<i64>, !transform.param<i64>, !transform.param<i64>)
-> (!pdl.operation, !pdl.operation, !pdl.operation, !pdl.operation)
}
func.func @tile_linalg_matmul(
%arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>)
-> (tensor<128x128xf32>, tensor<128x128xf32>) {
%0 = linalg.matmul ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
%1 = linalg.matmul ins(%0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
return %0, %1 : tensor<128x128xf32>, tensor<128x128xf32>
}
// -----
transform.sequence failures(propagate) {
^bb0(%arg1: !pdl.operation):
%0 = transform.structured.match ops{["linalg.matmul"]} in %arg1
// expected-note @below {{for this handle}}
%1 = transform.structured.match ops{["arith.constant"]} in %arg1
// expected-error @below {{expected as many dynamic size-producing operations (0) as target ops (2)}}
transform.structured.tile %0 [%1, %1, 1]
: (!pdl.operation, !pdl.operation, !pdl.operation)
-> (!pdl.operation, !pdl.operation, !pdl.operation, !pdl.operation)
}
func.func @tile_linalg_matmul(
%arg0: tensor<128x128xf32>, %arg1: tensor<128x128xf32>, %arg2: tensor<128x128xf32>)
-> (tensor<128x128xf32>, tensor<128x128xf32>) {
%0 = linalg.matmul ins(%arg0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
%1 = linalg.matmul ins(%0, %arg1: tensor<128x128xf32>, tensor<128x128xf32>)
outs(%arg2: tensor<128x128xf32>)
-> tensor<128x128xf32>
return %0, %1 : tensor<128x128xf32>, tensor<128x128xf32>
}
|