File: transform-op-vectorize.mlir

package info (click to toggle)
llvm-toolchain-16 1%3A16.0.6-15~deb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,634,792 kB
  • sloc: cpp: 6,179,261; ansic: 1,216,205; asm: 741,319; python: 196,614; objc: 75,325; f90: 49,640; lisp: 32,396; pascal: 12,286; sh: 9,394; perl: 7,442; ml: 5,494; awk: 3,523; makefile: 2,723; javascript: 1,206; xml: 886; fortran: 581; cs: 573
file content (135 lines) | stat: -rw-r--r-- 6,030 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
// RUN: mlir-opt %s -test-transform-dialect-interpreter -split-input-file -verify-diagnostics | FileCheck %s

// CHECK-LABEL: @vectorize_matmul
// CHECK-SAME: %[[A:.*]]: tensor<24x12xf32>
// CHECK-SAME: %[[B:.*]]: tensor<12x25xf32>
// CHECK-SAME: %[[C:.*]]: tensor<24x25xf32>
func.func @vectorize_matmul(%arg0: tensor<24x12xf32>,
                            %arg1: tensor<12x25xf32>,
                            %arg2: tensor<24x25xf32>) -> tensor<24x25xf32> {
  // CHECK: %[[vA:.+]] = vector.transfer_read %[[A]]
  // CHECK: %[[vB:.+]] = vector.transfer_read %[[B]]
  // CHECK: %[[vC:.+]] = vector.transfer_read %[[C]]
  // CHECK: %[[vR:.+]] = vector.contract {{.*}} %[[vA]], %[[vB]], %[[vC]]
  // CHECK: vector.transfer_write %[[vR]], %[[C]]
  %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32>
  func.return %0 : tensor<24x25xf32>
}

transform.sequence failures(propagate) {
^bb1(%arg1: !pdl.operation):
  %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1
  %1 = get_closest_isolated_parent %0 : (!pdl.operation) -> !pdl.operation
  %2 = transform.structured.vectorize %1
}

// -----

#map0 = affine_map<()[s0] -> (-s0 + 12, 7)>
#map1 = affine_map<()[s0] -> (-s0 + 7)>

// CHECK-LABEL: @vectorize_keep_pad
// CHECK-SAME: %[[C:[a-zA-Z0-9_]+]]: tensor<24x25xf32>
func.func @vectorize_keep_pad(
    %arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>,
    %arg2: tensor<24x25xf32>, %arg3: index, %arg4: index,
    %arg5: index) -> tensor<24x25xf32> {
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %0 = affine.min #map0()[%arg5]
  %1 = tensor.extract_slice %arg0[%arg3, %arg5] [4, %0] [1, 1] : tensor<24x12xf32> to tensor<4x?xf32>
  %2 = tensor.extract_slice %arg1[%arg5, %arg4] [%0, 5] [1, 1] : tensor<12x25xf32> to tensor<?x5xf32>
  %3 = tensor.extract_slice %arg2[%arg3, %arg4] [4, 5] [1, 1] : tensor<24x25xf32> to tensor<4x5xf32>
  %4 = affine.apply #map1()[%0]
  // CHECK: %[[pA:.*]] = tensor.pad
  %5 = tensor.pad %1 nofold low[%c0, %c0] high[%c0, %4] {
  ^bb0(%arg6: index, %arg7: index):
    tensor.yield %cst : f32
  } : tensor<4x?xf32> to tensor<4x7xf32>
  %6 = affine.apply #map1()[%0]
  // CHECK: %[[pB:.*]] = tensor.pad
  %7 = tensor.pad %2 nofold low[%c0, %c0] high[%6, %c0] {
  ^bb0(%arg6: index, %arg7: index):
    tensor.yield %cst : f32
  } : tensor<?x5xf32> to tensor<7x5xf32>
  // CHECK: %[[vA:.+]] = vector.transfer_read %[[pA]]
  // CHECK: %[[vB:.+]] = vector.transfer_read %[[pB]]
  // CHECK: %[[vC:.+]] = vector.transfer_read %[[C]]
  // CHECK: %[[vR:.+]] = vector.contract {{.*}} %[[vA]], %[[vB]], %[[vC]]
  // CHECK: vector.transfer_write %[[vR]], %[[C]]
  %8 = linalg.matmul ins(%5, %7 : tensor<4x7xf32>, tensor<7x5xf32>) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32>
  %9 = tensor.insert_slice %8 into %arg2[%arg3, %arg4] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32>
  return %9 : tensor<24x25xf32>
}

transform.sequence failures(propagate) {
^bb1(%arg1: !pdl.operation):
  %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1
  %1 = get_closest_isolated_parent %0 : (!pdl.operation) -> !pdl.operation
  %2 = transform.structured.vectorize %1
}

// -----

#map0 = affine_map<()[s0] -> (-s0 + 12, 7)>
#map1 = affine_map<()[s0] -> (-s0 + 7)>

// CHECK-LABEL: @vectorize_pad
// CHECK-SAME: %[[A:.+]]: tensor<24x12xf32>
// CHECK-SAME: %[[B:.+]]: tensor<12x25xf32>
// CHECK-SAME: %[[C:.+]]: tensor<24x25xf32>
func.func @vectorize_pad(
    %arg0: tensor<24x12xf32>, %arg1: tensor<12x25xf32>,
    %arg2: tensor<24x25xf32>, %arg3: index, %arg4: index,
    %arg5: index) -> tensor<24x25xf32> {
  %c0 = arith.constant 0 : index
  %cst = arith.constant 0.000000e+00 : f32
  %0 = affine.min #map0()[%arg5]
  // CHECK: %[[sA:.+]] = tensor.extract_slice %[[A]]
  // CHECK: %[[sB:.+]] = tensor.extract_slice %[[B]]
  %1 = tensor.extract_slice %arg0[%arg3, %arg5] [4, %0] [1, 1] : tensor<24x12xf32> to tensor<4x?xf32>
  %2 = tensor.extract_slice %arg1[%arg5, %arg4] [%0, 5] [1, 1] : tensor<12x25xf32> to tensor<?x5xf32>
  %3 = tensor.extract_slice %arg2[%arg3, %arg4] [4, 5] [1, 1] : tensor<24x25xf32> to tensor<4x5xf32>
  // CHECK: %[[vA:.+]] = vector.transfer_read %[[sA]]
  %4 = affine.apply #map1()[%0]
  %5 = tensor.pad %1 nofold low[%c0, %c0] high[%c0, %4] {
  ^bb0(%arg6: index, %arg7: index):
    tensor.yield %cst : f32
  } : tensor<4x?xf32> to tensor<4x7xf32>
  %6 = affine.apply #map1()[%0]
  // CHECK: %[[vB:.+]] = vector.transfer_read %[[sB]]
  %7 = tensor.pad %2 nofold low[%c0, %c0] high[%6, %c0] {
  ^bb0(%arg6: index, %arg7: index):
    tensor.yield %cst : f32
  } : tensor<?x5xf32> to tensor<7x5xf32>
  // CHECK: %[[vC:.+]] = vector.transfer_read %[[C]]
  // CHECK: %[[vR:.+]] = vector.contract {{.*}} %[[vA]], %[[vB]], %[[vC]]
  // CHECK: vector.transfer_write %[[vR]], %[[C]]
  %8 = linalg.matmul ins(%5, %7 : tensor<4x7xf32>, tensor<7x5xf32>) outs(%3 : tensor<4x5xf32>) -> tensor<4x5xf32>
  %9 = tensor.insert_slice %8 into %arg2[%arg3, %arg4] [4, 5] [1, 1] : tensor<4x5xf32> into tensor<24x25xf32>
  return %9 : tensor<24x25xf32>
}

transform.sequence failures(propagate) {
^bb1(%arg1: !pdl.operation):
  %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1
  %1 = get_closest_isolated_parent %0 : (!pdl.operation) -> !pdl.operation
  %2 = transform.structured.vectorize %1 {vectorize_padding}
}

// -----

func.func @vectorize(%arg0: tensor<24x12xf32>,
                     %arg1: tensor<12x25xf32>,
                     %arg2: tensor<24x25xf32>) -> tensor<24x25xf32> {
  // expected-note @below {{non-isolated target}}
  %0 = linalg.matmul ins(%arg0, %arg1 : tensor<24x12xf32>, tensor<12x25xf32>) outs(%arg2 : tensor<24x25xf32>) -> tensor<24x25xf32>
  func.return %0 : tensor<24x25xf32>
}

transform.sequence failures(propagate) {
^bb1(%arg1: !pdl.operation):
  %0 = transform.structured.match ops{["linalg.matmul"]} in %arg1
  // expected-error @below {{op requires isolated-from-above targets}}
  %2 = transform.structured.vectorize %0
}