File: loop-fusion-4.mlir

package info (click to toggle)
llvm-toolchain-16 1%3A16.0.6-15~deb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,634,792 kB
  • sloc: cpp: 6,179,261; ansic: 1,216,205; asm: 741,319; python: 196,614; objc: 75,325; f90: 49,640; lisp: 32,396; pascal: 12,286; sh: 9,394; perl: 7,442; ml: 5,494; awk: 3,523; makefile: 2,723; javascript: 1,206; xml: 886; fortran: 581; cs: 573
file content (176 lines) | stat: -rw-r--r-- 6,915 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline='builtin.module(func.func(affine-loop-fusion{mode=producer}))' -split-input-file | FileCheck %s --check-prefix=PRODUCER-CONSUMER
// RUN: mlir-opt -allow-unregistered-dialect %s -pass-pipeline='builtin.module(func.func(affine-loop-fusion{fusion-maximal mode=sibling}))' -split-input-file | FileCheck %s --check-prefix=SIBLING-MAXIMAL

// Part I of fusion tests in  mlir/test/Transforms/loop-fusion.mlir.
// Part II of fusion tests in mlir/test/Transforms/loop-fusion-2.mlir
// Part III of fusion tests in mlir/test/Transforms/loop-fusion-3.mlir

// Expects fusion of producer into consumer at depth 4 and subsequent removal of
// source loop.
// PRODUCER-CONSUMER-LABEL: func @unflatten4d
func.func @unflatten4d(%arg1: memref<7x8x9x10xf32>) {
  %m = memref.alloc() : memref<5040xf32>
  %cf7 = arith.constant 7.0 : f32

  affine.for %i0 = 0 to 7 {
    affine.for %i1 = 0 to 8 {
      affine.for %i2 = 0 to 9 {
        affine.for %i3 = 0 to 10 {
          affine.store %cf7, %m[720 * %i0 + 90 * %i1 + 10 * %i2 + %i3] : memref<5040xf32>
        }
      }
    }
  }
  affine.for %i0 = 0 to 7 {
    affine.for %i1 = 0 to 8 {
      affine.for %i2 = 0 to 9 {
        affine.for %i3 = 0 to 10 {
          %v0 = affine.load %m[720 * %i0 + 90 * %i1 + 10 * %i2 + %i3] : memref<5040xf32>
          affine.store %v0, %arg1[%i0, %i1, %i2, %i3] : memref<7x8x9x10xf32>
        }
      }
    }
  }
  return
}

// PRODUCER-CONSUMER:        affine.for
// PRODUCER-CONSUMER-NEXT:     affine.for
// PRODUCER-CONSUMER-NEXT:       affine.for
// PRODUCER-CONSUMER-NEXT:         affine.for
// PRODUCER-CONSUMER-NOT:    affine.for
// PRODUCER-CONSUMER: return

// -----

// Expects fusion of producer into consumer at depth 2 and subsequent removal of
// source loop.
// PRODUCER-CONSUMER-LABEL: func @unflatten2d_with_transpose
func.func @unflatten2d_with_transpose(%arg1: memref<8x7xf32>) {
  %m = memref.alloc() : memref<56xf32>
  %cf7 = arith.constant 7.0 : f32

  affine.for %i0 = 0 to 7 {
    affine.for %i1 = 0 to 8 {
      affine.store %cf7, %m[8 * %i0 + %i1] : memref<56xf32>
    }
  }
  affine.for %i0 = 0 to 8 {
    affine.for %i1 = 0 to 7 {
      %v0 = affine.load %m[%i0 + 8 * %i1] : memref<56xf32>
      affine.store %v0, %arg1[%i0, %i1] : memref<8x7xf32>
    }
  }
  return
}

// PRODUCER-CONSUMER:        affine.for
// PRODUCER-CONSUMER-NEXT:     affine.for
// PRODUCER-CONSUMER-NOT:    affine.for
// PRODUCER-CONSUMER: return

// -----

// Expects fusion of producer into consumer at depth 1 and source loop to not
// be removed due to difference in loop steps.
// PRODUCER-CONSUMER-LABEL: func @check_src_dst_step
func.func @check_src_dst_step(%m : memref<100xf32>,
                         %src: memref<100xf32>,
                         %out: memref<100xf32>) {
  affine.for %i0 = 0 to 100 {
    %r1 = affine.load %src[%i0]: memref<100xf32>
    affine.store %r1, %m[%i0] : memref<100xf32>
  }
  affine.for %i2 = 0 to 100 step 2 {
    %r2 = affine.load %m[%i2] : memref<100xf32>
    affine.store %r2, %out[%i2] : memref<100xf32>
  }
  return
}

// Check if the fusion did take place as well as that the source loop was
// not removed. To check if fusion took place, the read instruction from the
// original source loop is checked to be in the fused loop.
//
// PRODUCER-CONSUMER:        affine.for %[[idx_0:.*]] = 0 to 100 {
// PRODUCER-CONSUMER-NEXT:     %[[result_0:.*]] = affine.load %[[arr1:.*]][%[[idx_0]]] : memref<100xf32>
// PRODUCER-CONSUMER-NEXT:     affine.store %[[result_0]], %{{.*}}[%[[idx_0]]] : memref<100xf32>
// PRODUCER-CONSUMER-NEXT:   }
// PRODUCER-CONSUMER:        affine.for %[[idx_1:.*]] = 0 to 100 step 2 {
// PRODUCER-CONSUMER:          affine.load %[[arr1]][%[[idx_1]]] : memref<100xf32>
// PRODUCER-CONSUMER:        }
// PRODUCER-CONSUMER:        return

// -----

// SIBLING-MAXIMAL-LABEL:   func @reduce_add_non_maximal_f32_f32(
func.func @reduce_add_non_maximal_f32_f32(%arg0: memref<64x64xf32, 1>, %arg1 : memref<1x64xf32, 1>, %arg2 : memref<1x64xf32, 1>) {
    %cst_0 = arith.constant 0.000000e+00 : f32
    %cst_1 = arith.constant 1.000000e+00 : f32
    affine.for %arg3 = 0 to 1 {
      affine.for %arg4 = 0 to 64 {
        %accum = affine.for %arg5 = 0 to 64 iter_args (%prevAccum = %cst_0) -> f32 {
          %4 = affine.load %arg0[%arg5, %arg4] : memref<64x64xf32, 1>
          %5 = arith.addf %prevAccum, %4 : f32
          affine.yield %5 : f32
        }
        %accum_dbl = arith.addf %accum, %accum : f32
        affine.store %accum_dbl, %arg1[%arg3, %arg4] : memref<1x64xf32, 1>
      }
    }
    affine.for %arg3 = 0 to 1 {
      affine.for %arg4 = 0 to 64 {
        // Following loop  trip count does not match the corresponding source trip count.
        %accum = affine.for %arg5 = 0 to 32 iter_args (%prevAccum = %cst_1) -> f32 {
          %4 = affine.load %arg0[%arg5, %arg4] : memref<64x64xf32, 1>
          %5 = arith.mulf %prevAccum, %4 : f32
          affine.yield %5 : f32
        }
        %accum_sqr = arith.mulf %accum, %accum : f32
        affine.store %accum_sqr, %arg2[%arg3, %arg4] : memref<1x64xf32, 1>
      }
    }
    return
}
// Test checks the loop structure is preserved after sibling fusion
// since the destination loop and source loop trip counts do not
// match.
// SIBLING-MAXIMAL:        %[[cst_0:.*]] = arith.constant 0.000000e+00 : f32
// SIBLING-MAXIMAL-NEXT:        %[[cst_1:.*]] = arith.constant 1.000000e+00 : f32
// SIBLING-MAXIMAL-NEXT:           affine.for %[[idx_0:.*]]= 0 to 1 {
// SIBLING-MAXIMAL-NEXT:             affine.for %[[idx_1:.*]] = 0 to 64 {
// SIBLING-MAXIMAL-NEXT:               %[[result_1:.*]] = affine.for %[[idx_2:.*]] = 0 to 32 iter_args(%[[iter_0:.*]] = %[[cst_1]]) -> (f32) {
// SIBLING-MAXIMAL-NEXT:                 %[[result_0:.*]] = affine.for %[[idx_3:.*]] = 0 to 64 iter_args(%[[iter_1:.*]] = %[[cst_0]]) -> (f32) {

// -----

// PRODUCER-CONSUMER-LABEL: func @fusion_for_multiple_blocks() {
func.func @fusion_for_multiple_blocks() {
^bb0:
  %m = memref.alloc() : memref<10xf32>
  %cf7 = arith.constant 7.0 : f32

  affine.for %i0 = 0 to 10 {
    affine.store %cf7, %m[%i0] : memref<10xf32>
  }
  affine.for %i1 = 0 to 10 {
    %v0 = affine.load %m[%i1] : memref<10xf32>
  }
  // PRODUCER-CONSUMER:      affine.for %{{.*}} = 0 to 10 {
  // PRODUCER-CONSUMER-NEXT:   affine.store %{{.*}}, %{{.*}}[0] : memref<1xf32>
  // PRODUCER-CONSUMER-NEXT:   affine.load %{{.*}}[0] : memref<1xf32>
  // PRODUCER-CONSUMER-NEXT: }
  cf.br ^bb1
^bb1:
  affine.for %i0 = 0 to 10 {
    affine.store %cf7, %m[%i0] : memref<10xf32>
  }
  affine.for %i1 = 0 to 10 {
    %v0 = affine.load %m[%i1] : memref<10xf32>
  }
  // PRODUCER-CONSUMER:      affine.for %{{.*}} = 0 to 10 {
  // PRODUCER-CONSUMER-NEXT:   affine.store %{{.*}}, %{{.*}}[0] : memref<1xf32>
  // PRODUCER-CONSUMER-NEXT:   affine.load %{{.*}}[0] : memref<1xf32>
  // PRODUCER-CONSUMER-NEXT: }
  return
}