1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
|
//===- PluginInterface.cpp - Target independent plugin device interface ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
#include "PluginInterface.h"
#include "Debug.h"
#include "GlobalHandler.h"
#include "JIT.h"
#include "elf_common.h"
#include "omptarget.h"
#include "omptargetplugin.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/JSON.h"
#include "llvm/Support/MemoryBuffer.h"
#include <cstdint>
#include <limits>
using namespace llvm;
using namespace omp;
using namespace target;
using namespace plugin;
GenericPluginTy *Plugin::SpecificPlugin = nullptr;
// TODO: Fix any thread safety issues for multi-threaded kernel recording.
struct RecordReplayTy {
private:
// Memory pointers for recording, replaying memory.
void *MemoryStart;
void *MemoryPtr;
size_t MemorySize;
GenericDeviceTy *Device;
std::mutex AllocationLock;
// Environment variables for record and replay.
// Enables recording kernels if set.
BoolEnvar OMPX_RecordKernel;
// Enables replaying a kernel if set.
BoolEnvar OMPX_ReplayKernel;
// Enables saving the device memory kernel output post execution if set.
BoolEnvar OMPX_ReplaySaveOutput;
// Sets the maximum to pre-allocate device memory.
UInt32Envar OMPX_DeviceMemorySize;
// Record/replay pre-allocates the largest possible device memory using the
// default kind.
// TODO: Expand allocation to include other kinds (device, host, shared) and
// possibly use a MemoryManager to track (de-)allocations for
// storing/retrieving when recording/replaying.
Error preallocateDeviceMemory() {
// Pre-allocate memory on device. Starts with 64GB and subtracts in steps
// of 1GB until allocation succeeds.
const size_t MAX_MEMORY_ALLOCATION =
OMPX_DeviceMemorySize * 1024 * 1024 * 1024ULL;
constexpr size_t STEP = 1024 * 1024 * 1024ULL;
MemoryStart = nullptr;
for (size_t Try = MAX_MEMORY_ALLOCATION; Try > 0; Try -= STEP) {
MemoryStart =
Device->allocate(Try, /* HstPtr */ nullptr, TARGET_ALLOC_DEFAULT);
if (MemoryStart)
break;
}
if (!MemoryStart)
return Plugin::error("Allocating record/replay memory");
MemoryPtr = MemoryStart;
MemorySize = 0;
return Plugin::success();
}
void dumpDeviceMemory(StringRef Filename,
AsyncInfoWrapperTy &AsyncInfoWrapper) {
ErrorOr<std::unique_ptr<WritableMemoryBuffer>> DeviceMemoryMB =
WritableMemoryBuffer::getNewUninitMemBuffer(MemorySize);
if (!DeviceMemoryMB)
report_fatal_error("Error creating MemoryBuffer for device memory");
auto Err = Device->dataRetrieve(DeviceMemoryMB.get()->getBufferStart(),
MemoryStart, MemorySize, AsyncInfoWrapper);
if (Err)
report_fatal_error("Error retrieving data for target pointer");
StringRef DeviceMemory(DeviceMemoryMB.get()->getBufferStart(), MemorySize);
std::error_code EC;
raw_fd_ostream OS(Filename, EC);
if (EC)
report_fatal_error("Error dumping memory to file " + Filename + " :" +
EC.message());
OS << DeviceMemory;
OS.close();
}
public:
bool isRecording() const { return OMPX_RecordKernel; }
bool isReplaying() const { return OMPX_ReplayKernel; }
bool isRecordingOrReplaying() const {
return (OMPX_RecordKernel || OMPX_ReplayKernel);
}
bool isSaveOutputEnabled() const { return OMPX_ReplaySaveOutput; }
RecordReplayTy()
: OMPX_RecordKernel("LIBOMPTARGET_RECORD"),
OMPX_ReplayKernel("LIBOMPTARGET_REPLAY"),
OMPX_ReplaySaveOutput("LIBOMPTARGET_RR_SAVE_OUTPUT"),
OMPX_DeviceMemorySize("LIBOMPTARGET_RR_DEVMEM_SIZE",
/* Default in GB */ 64) {}
void saveImage(const char *Name, DeviceImageTy &Image) {
Twine ImageName = Twine(Name) + Twine(".image");
std::error_code EC;
raw_fd_ostream OS(ImageName.str(), EC);
if (EC)
report_fatal_error("Error saving image : " + StringRef(EC.message()));
if (auto TgtImageBitcode = Image.getTgtImageBitcode()) {
size_t Size =
getPtrDiff(TgtImageBitcode->ImageEnd, TgtImageBitcode->ImageStart);
MemoryBufferRef MBR = MemoryBufferRef(
StringRef((const char *)TgtImageBitcode->ImageStart, Size), "");
OS << MBR.getBuffer();
} else {
OS << Image.getMemoryBuffer().getBuffer();
}
OS.close();
}
void saveKernelInputInfo(const char *Name, void **ArgPtrs,
ptrdiff_t *ArgOffsets, int32_t NumArgs,
uint64_t NumTeamsClause, uint32_t ThreadLimitClause,
uint64_t LoopTripCount,
AsyncInfoWrapperTy &AsyncInfoWrapper) {
json::Object JsonKernelInfo;
JsonKernelInfo["Name"] = Name;
JsonKernelInfo["NumArgs"] = NumArgs;
JsonKernelInfo["NumTeamsClause"] = NumTeamsClause;
JsonKernelInfo["ThreadLimitClause"] = ThreadLimitClause;
JsonKernelInfo["LoopTripCount"] = LoopTripCount;
JsonKernelInfo["DeviceMemorySize"] = MemorySize;
JsonKernelInfo["DeviceId"] = Device->getDeviceId();
json::Array JsonArgPtrs;
for (int I = 0; I < NumArgs; ++I)
JsonArgPtrs.push_back((intptr_t)ArgPtrs[I]);
JsonKernelInfo["ArgPtrs"] = json::Value(std::move(JsonArgPtrs));
json::Array JsonArgOffsets;
for (int I = 0; I < NumArgs; ++I)
JsonArgOffsets.push_back(ArgOffsets[I]);
JsonKernelInfo["ArgOffsets"] = json::Value(std::move(JsonArgOffsets));
Twine KernelName(Name);
Twine MemoryFilename = KernelName + ".memory";
dumpDeviceMemory(MemoryFilename.str(), AsyncInfoWrapper);
Twine JsonFilename = KernelName + ".json";
std::error_code EC;
raw_fd_ostream JsonOS(JsonFilename.str(), EC);
if (EC)
report_fatal_error("Error saving kernel json file : " +
StringRef(EC.message()));
JsonOS << json::Value(std::move(JsonKernelInfo));
JsonOS.close();
}
void saveKernelOutputInfo(const char *Name,
AsyncInfoWrapperTy &AsyncInfoWrapper) {
Twine OutputFilename =
Twine(Name) + (isRecording() ? ".original.output" : ".replay.output");
dumpDeviceMemory(OutputFilename.str(), AsyncInfoWrapper);
}
void *alloc(uint64_t Size) {
assert(MemoryStart && "Expected memory has been pre-allocated");
void *Alloc = nullptr;
constexpr int Alignment = 16;
// Assumes alignment is a power of 2.
int64_t AlignedSize = (Size + (Alignment - 1)) & (~(Alignment - 1));
std::lock_guard<std::mutex> LG(AllocationLock);
Alloc = MemoryPtr;
MemoryPtr = (char *)MemoryPtr + AlignedSize;
MemorySize += AlignedSize;
return Alloc;
}
Error init(GenericDeviceTy *Device) {
this->Device = Device;
return preallocateDeviceMemory();
}
void deinit() { Device->free(MemoryStart); }
} RecordReplay;
AsyncInfoWrapperTy::~AsyncInfoWrapperTy() {
// If we used a local async info object we want synchronous behavior.
// In that case, and assuming the current status code is OK, we will
// synchronize explicitly when the object is deleted.
if (AsyncInfoPtr == &LocalAsyncInfo && LocalAsyncInfo.Queue && !Err)
Err = Device.synchronize(&LocalAsyncInfo);
}
Error GenericKernelTy::init(GenericDeviceTy &GenericDevice,
DeviceImageTy &Image) {
PreferredNumThreads = getDefaultNumThreads(GenericDevice);
MaxNumThreads = GenericDevice.getThreadLimit();
return initImpl(GenericDevice, Image);
}
Error GenericKernelTy::launch(GenericDeviceTy &GenericDevice, void **ArgPtrs,
ptrdiff_t *ArgOffsets, KernelArgsTy &KernelArgs,
AsyncInfoWrapperTy &AsyncInfoWrapper) const {
llvm::SmallVector<void *, 16> Args;
llvm::SmallVector<void *, 16> Ptrs;
void *KernelArgsPtr =
prepareArgs(GenericDevice, ArgPtrs, ArgOffsets, KernelArgs.NumArgs, Args,
Ptrs, AsyncInfoWrapper);
uint32_t NumThreads = getNumThreads(GenericDevice, KernelArgs.ThreadLimit);
uint64_t NumBlocks = getNumBlocks(GenericDevice, KernelArgs.NumTeams,
KernelArgs.Tripcount, NumThreads);
INFO(OMP_INFOTYPE_PLUGIN_KERNEL, GenericDevice.getDeviceId(),
"Launching kernel %s with %" PRIu64
" blocks and %d threads in %s mode\n",
getName(), NumBlocks, NumThreads, getExecutionModeName());
return launchImpl(GenericDevice, NumThreads, NumBlocks, KernelArgs,
KernelArgsPtr, AsyncInfoWrapper);
}
void *GenericKernelTy::prepareArgs(GenericDeviceTy &GenericDevice,
void **ArgPtrs, ptrdiff_t *ArgOffsets,
int32_t NumArgs,
llvm::SmallVectorImpl<void *> &Args,
llvm::SmallVectorImpl<void *> &Ptrs,
AsyncInfoWrapperTy &AsyncInfoWrapper) const {
Args.resize(NumArgs);
Ptrs.resize(NumArgs);
if (NumArgs == 0)
return nullptr;
for (int I = 0; I < NumArgs; ++I) {
Ptrs[I] = (void *)((intptr_t)ArgPtrs[I] + ArgOffsets[I]);
Args[I] = &Ptrs[I];
}
return &Args[0];
}
uint32_t GenericKernelTy::getNumThreads(GenericDeviceTy &GenericDevice,
uint32_t ThreadLimitClause[3]) const {
assert(ThreadLimitClause[1] == 0 && ThreadLimitClause[2] == 0 &&
"Multi dimensional launch not supported yet.");
if (ThreadLimitClause[0] > 0 && isGenericMode())
ThreadLimitClause[0] += GenericDevice.getWarpSize();
return std::min(MaxNumThreads, (ThreadLimitClause[0] > 0)
? ThreadLimitClause[0]
: PreferredNumThreads);
}
uint64_t GenericKernelTy::getNumBlocks(GenericDeviceTy &GenericDevice,
uint32_t NumTeamsClause[3],
uint64_t LoopTripCount,
uint32_t NumThreads) const {
assert(NumTeamsClause[1] == 0 && NumTeamsClause[2] == 0 &&
"Multi dimensional launch not supported yet.");
if (NumTeamsClause[0] > 0) {
// TODO: We need to honor any value and consequently allow more than the
// block limit. For this we might need to start multiple kernels or let the
// blocks start again until the requested number has been started.
return std::min(NumTeamsClause[0], GenericDevice.getBlockLimit());
}
uint64_t TripCountNumBlocks = std::numeric_limits<uint64_t>::max();
if (LoopTripCount > 0) {
if (isSPMDMode()) {
// We have a combined construct, i.e. `target teams distribute
// parallel for [simd]`. We launch so many teams so that each thread
// will execute one iteration of the loop. round up to the nearest
// integer
TripCountNumBlocks = ((LoopTripCount - 1) / NumThreads) + 1;
} else {
assert((isGenericMode() || isGenericSPMDMode()) &&
"Unexpected execution mode!");
// If we reach this point, then we have a non-combined construct, i.e.
// `teams distribute` with a nested `parallel for` and each team is
// assigned one iteration of the `distribute` loop. E.g.:
//
// #pragma omp target teams distribute
// for(...loop_tripcount...) {
// #pragma omp parallel for
// for(...) {}
// }
//
// Threads within a team will execute the iterations of the `parallel`
// loop.
TripCountNumBlocks = LoopTripCount;
}
}
// If the loops are long running we rather reuse blocks than spawn too many.
uint32_t PreferredNumBlocks = std::min(uint32_t(TripCountNumBlocks),
getDefaultNumBlocks(GenericDevice));
return std::min(PreferredNumBlocks, GenericDevice.getBlockLimit());
}
GenericDeviceTy::GenericDeviceTy(int32_t DeviceId, int32_t NumDevices,
const llvm::omp::GV &OMPGridValues)
: MemoryManager(nullptr), OMP_TeamLimit("OMP_TEAM_LIMIT"),
OMP_NumTeams("OMP_NUM_TEAMS"),
OMP_TeamsThreadLimit("OMP_TEAMS_THREAD_LIMIT"),
OMPX_DebugKind("LIBOMPTARGET_DEVICE_RTL_DEBUG"),
OMPX_SharedMemorySize("LIBOMPTARGET_SHARED_MEMORY_SIZE"),
// Do not initialize the following two envars since they depend on the
// device initialization. These cannot be consulted until the device is
// initialized correctly. We intialize them in GenericDeviceTy::init().
OMPX_TargetStackSize(), OMPX_TargetHeapSize(),
// By default, the initial number of streams and events are 32.
OMPX_InitialNumStreams("LIBOMPTARGET_NUM_INITIAL_STREAMS", 32),
OMPX_InitialNumEvents("LIBOMPTARGET_NUM_INITIAL_EVENTS", 32),
DeviceId(DeviceId), GridValues(OMPGridValues),
PeerAccesses(NumDevices, PeerAccessState::PENDING), PeerAccessesLock(),
PinnedAllocs(*this) {
if (OMP_NumTeams > 0)
GridValues.GV_Max_Teams =
std::min(GridValues.GV_Max_Teams, uint32_t(OMP_NumTeams));
if (OMP_TeamsThreadLimit > 0)
GridValues.GV_Max_WG_Size =
std::min(GridValues.GV_Max_WG_Size, uint32_t(OMP_TeamsThreadLimit));
}
Error GenericDeviceTy::init(GenericPluginTy &Plugin) {
if (auto Err = initImpl(Plugin))
return Err;
// Read and reinitialize the envars that depend on the device initialization.
// Notice these two envars may change the stack size and heap size of the
// device, so they need the device properly initialized.
auto StackSizeEnvarOrErr = UInt64Envar::create(
"LIBOMPTARGET_STACK_SIZE",
[this](uint64_t &V) -> Error { return getDeviceStackSize(V); },
[this](uint64_t V) -> Error { return setDeviceStackSize(V); });
if (!StackSizeEnvarOrErr)
return StackSizeEnvarOrErr.takeError();
OMPX_TargetStackSize = std::move(*StackSizeEnvarOrErr);
auto HeapSizeEnvarOrErr = UInt64Envar::create(
"LIBOMPTARGET_HEAP_SIZE",
[this](uint64_t &V) -> Error { return getDeviceHeapSize(V); },
[this](uint64_t V) -> Error { return setDeviceHeapSize(V); });
if (!HeapSizeEnvarOrErr)
return HeapSizeEnvarOrErr.takeError();
OMPX_TargetHeapSize = std::move(*HeapSizeEnvarOrErr);
// Enable the memory manager if required.
auto [ThresholdMM, EnableMM] = MemoryManagerTy::getSizeThresholdFromEnv();
if (EnableMM)
MemoryManager = new MemoryManagerTy(*this, ThresholdMM);
if (RecordReplay.isRecordingOrReplaying())
if (auto Err = RecordReplay.init(this))
return Err;
return Plugin::success();
}
Error GenericDeviceTy::deinit() {
// Delete the memory manager before deinitilizing the device. Otherwise,
// we may delete device allocations after the device is deinitialized.
if (MemoryManager)
delete MemoryManager;
MemoryManager = nullptr;
if (RecordReplay.isRecordingOrReplaying())
RecordReplay.deinit();
return deinitImpl();
}
Expected<__tgt_target_table *>
GenericDeviceTy::loadBinary(GenericPluginTy &Plugin,
const __tgt_device_image *InputTgtImage) {
assert(InputTgtImage && "Expected non-null target image");
DP("Load data from image " DPxMOD "\n", DPxPTR(InputTgtImage->ImageStart));
auto PostJITImageOrErr = Plugin.getJIT().process(*InputTgtImage, *this);
if (!PostJITImageOrErr) {
auto Err = PostJITImageOrErr.takeError();
REPORT("Failure to jit IR image %p on device %d: %s\n", InputTgtImage,
DeviceId, toString(std::move(Err)).data());
return nullptr;
}
// Load the binary and allocate the image object. Use the next available id
// for the image id, which is the number of previously loaded images.
auto ImageOrErr =
loadBinaryImpl(PostJITImageOrErr.get(), LoadedImages.size());
if (!ImageOrErr)
return ImageOrErr.takeError();
DeviceImageTy *Image = *ImageOrErr;
assert(Image != nullptr && "Invalid image");
if (InputTgtImage != PostJITImageOrErr.get())
Image->setTgtImageBitcode(InputTgtImage);
// Add the image to list.
LoadedImages.push_back(Image);
// Setup the device environment if needed.
if (auto Err = setupDeviceEnvironment(Plugin, *Image))
return std::move(Err);
// Register all offload entries of the image.
if (auto Err = registerOffloadEntries(*Image))
return std::move(Err);
// Return the pointer to the table of entries.
return Image->getOffloadEntryTable();
}
Error GenericDeviceTy::setupDeviceEnvironment(GenericPluginTy &Plugin,
DeviceImageTy &Image) {
// There are some plugins that do not need this step.
if (!shouldSetupDeviceEnvironment())
return Plugin::success();
DeviceEnvironmentTy DeviceEnvironment;
DeviceEnvironment.DebugKind = OMPX_DebugKind;
DeviceEnvironment.NumDevices = Plugin.getNumDevices();
// TODO: The device ID used here is not the real device ID used by OpenMP.
DeviceEnvironment.DeviceNum = DeviceId;
DeviceEnvironment.DynamicMemSize = OMPX_SharedMemorySize;
// Create the metainfo of the device environment global.
GlobalTy DevEnvGlobal("__omp_rtl_device_environment",
sizeof(DeviceEnvironmentTy), &DeviceEnvironment);
// Write device environment values to the device.
GenericGlobalHandlerTy &GHandler = Plugin.getGlobalHandler();
if (auto Err = GHandler.writeGlobalToDevice(*this, Image, DevEnvGlobal)) {
DP("Missing symbol %s, continue execution anyway.\n",
DevEnvGlobal.getName().data());
consumeError(std::move(Err));
}
return Plugin::success();
}
Error GenericDeviceTy::registerOffloadEntries(DeviceImageTy &Image) {
const __tgt_offload_entry *Begin = Image.getTgtImage()->EntriesBegin;
const __tgt_offload_entry *End = Image.getTgtImage()->EntriesEnd;
for (const __tgt_offload_entry *Entry = Begin; Entry != End; ++Entry) {
// The host should have always something in the address to uniquely
// identify the entry.
if (!Entry->addr)
return Plugin::error("Failure to register entry without address");
__tgt_offload_entry DeviceEntry = {0};
if (Entry->size) {
if (auto Err = registerGlobalOffloadEntry(Image, *Entry, DeviceEntry))
return Err;
} else {
if (auto Err = registerKernelOffloadEntry(Image, *Entry, DeviceEntry))
return Err;
}
assert(DeviceEntry.addr && "Device addr of offload entry cannot be null");
DP("Entry point " DPxMOD " maps to%s %s (" DPxMOD ")\n",
DPxPTR(Entry - Begin), (Entry->size) ? " global" : "", Entry->name,
DPxPTR(DeviceEntry.addr));
}
return Plugin::success();
}
Error GenericDeviceTy::registerGlobalOffloadEntry(
DeviceImageTy &Image, const __tgt_offload_entry &GlobalEntry,
__tgt_offload_entry &DeviceEntry) {
GenericPluginTy &Plugin = Plugin::get();
DeviceEntry = GlobalEntry;
// Create a metadata object for the device global.
GlobalTy DeviceGlobal(GlobalEntry.name, GlobalEntry.size);
// Get the address of the device of the global.
GenericGlobalHandlerTy &GHandler = Plugin.getGlobalHandler();
if (auto Err =
GHandler.getGlobalMetadataFromDevice(*this, Image, DeviceGlobal))
return Err;
// Store the device address on the device entry.
DeviceEntry.addr = DeviceGlobal.getPtr();
assert(DeviceEntry.addr && "Invalid device global's address");
// Note: In the current implementation declare target variables
// can either be link or to. This means that once unified
// memory is activated via the requires directive, the variable
// can be used directly from the host in both cases.
if (Plugin.getRequiresFlags() & OMP_REQ_UNIFIED_SHARED_MEMORY) {
// If unified memory is present any target link or to variables
// can access host addresses directly. There is no longer a
// need for device copies.
GlobalTy HostGlobal(GlobalEntry);
if (auto Err = GHandler.writeGlobalToDevice(*this, Image, HostGlobal,
DeviceGlobal))
return Err;
}
// Add the device entry on the entry table.
Image.getOffloadEntryTable().addEntry(DeviceEntry);
return Plugin::success();
}
Error GenericDeviceTy::registerKernelOffloadEntry(
DeviceImageTy &Image, const __tgt_offload_entry &KernelEntry,
__tgt_offload_entry &DeviceEntry) {
DeviceEntry = KernelEntry;
// Create a kernel object.
auto KernelOrErr = constructKernelEntry(KernelEntry, Image);
if (!KernelOrErr)
return KernelOrErr.takeError();
GenericKernelTy *Kernel = *KernelOrErr;
assert(Kernel != nullptr && "Invalid kernel");
// Initialize the kernel.
if (auto Err = Kernel->init(*this, Image))
return Err;
// Set the device entry address to the kernel address and store the entry on
// the entry table.
DeviceEntry.addr = (void *)Kernel;
Image.getOffloadEntryTable().addEntry(DeviceEntry);
return Plugin::success();
}
Expected<OMPTgtExecModeFlags>
GenericDeviceTy::getExecutionModeForKernel(StringRef Name,
DeviceImageTy &Image) {
// Create a metadata object for the exec mode global (auto-generated).
StaticGlobalTy<llvm::omp::OMPTgtExecModeFlags> ExecModeGlobal(Name.data(),
"_exec_mode");
// Retrieve execution mode for the kernel. This may fail since some kernels
// may not have an execution mode.
GenericGlobalHandlerTy &GHandler = Plugin::get().getGlobalHandler();
if (auto Err = GHandler.readGlobalFromImage(*this, Image, ExecModeGlobal)) {
// Consume the error since it is acceptable to fail.
[[maybe_unused]] std::string ErrStr = toString(std::move(Err));
DP("Failed to read execution mode for '%s': %s\n"
"Using default SPMD (2) execution mode\n",
Name.data(), ErrStr.data());
return OMP_TGT_EXEC_MODE_SPMD;
}
// Check that the retrieved execution mode is valid.
if (!GenericKernelTy::isValidExecutionMode(ExecModeGlobal.getValue()))
return Plugin::error("Invalid execution mode %d for '%s'",
ExecModeGlobal.getValue(), Name.data());
return ExecModeGlobal.getValue();
}
Error PinnedAllocationMapTy::registerHostBuffer(void *HstPtr,
void *DevAccessiblePtr,
size_t Size) {
assert(HstPtr && "Invalid pointer");
assert(DevAccessiblePtr && "Invalid pointer");
std::lock_guard<std::shared_mutex> Lock(Mutex);
// No pinned allocation should intersect.
auto Res = Allocs.insert({HstPtr, DevAccessiblePtr, Size});
if (!Res.second)
return Plugin::error("Cannot register locked buffer");
return Plugin::success();
}
Error PinnedAllocationMapTy::unregisterHostBuffer(void *HstPtr) {
assert(HstPtr && "Invalid pointer");
std::lock_guard<std::shared_mutex> Lock(Mutex);
// Find the pinned allocation starting at the host pointer address.
auto It = Allocs.find({HstPtr});
if (It == Allocs.end())
return Plugin::error("Cannot find locked buffer");
const EntryTy &Entry = *It;
// There should be no other references to the pinned allocation.
if (Entry.References > 1)
return Plugin::error("The locked buffer is still being used");
// Remove the entry from the map.
Allocs.erase(It);
return Plugin::success();
}
Expected<void *> PinnedAllocationMapTy::lockHostBuffer(void *HstPtr,
size_t Size) {
assert(HstPtr && "Invalid pointer");
std::lock_guard<std::shared_mutex> Lock(Mutex);
auto It = findIntersecting(HstPtr);
// No intersecting registered allocation found in the map. We must lock and
// register the memory buffer into the map.
if (It == Allocs.end()) {
// First, lock the host buffer and retrieve the device accessible pointer.
auto PinnedPtrOrErr = Device.dataLockImpl(HstPtr, Size);
if (!PinnedPtrOrErr)
return PinnedPtrOrErr.takeError();
// Then, insert the host buffer entry into the map.
auto Res = Allocs.insert({HstPtr, *PinnedPtrOrErr, Size});
if (!Res.second)
return Plugin::error("Cannot register locked buffer");
// Return the device accessible pointer.
return *PinnedPtrOrErr;
}
const EntryTy &Entry = *It;
#ifdef OMPTARGET_DEBUG
// Do not allow partial overlapping among host pinned buffers.
if (advanceVoidPtr(HstPtr, Size) > advanceVoidPtr(Entry.HstPtr, Entry.Size))
return Plugin::error("Partial overlapping not allowed in locked memory");
#endif
// Increase the number of references.
Entry.References++;
// Return the device accessible pointer after applying the correct offset.
return advanceVoidPtr(Entry.DevAccessiblePtr,
getPtrDiff(HstPtr, Entry.HstPtr));
}
Error PinnedAllocationMapTy::unlockHostBuffer(void *HstPtr) {
assert(HstPtr && "Invalid pointer");
std::lock_guard<std::shared_mutex> Lock(Mutex);
auto It = findIntersecting(HstPtr);
if (It == Allocs.end())
return Plugin::error("Cannot find locked buffer");
const EntryTy &Entry = *It;
// Decrease the number of references. No need to do anything if there are
// others using the allocation.
if (--Entry.References > 0)
return Plugin::success();
// This was the last user of the allocation. Unlock the original locked memory
// buffer, which is the host pointer stored in the entry.
if (auto Err = Device.dataUnlockImpl(Entry.HstPtr))
return Err;
// Remove the entry from the map.
size_t Erased = Allocs.erase(Entry);
if (!Erased)
return Plugin::error("Cannot find locked buffer");
return Plugin::success();
}
Error GenericDeviceTy::synchronize(__tgt_async_info *AsyncInfo) {
if (!AsyncInfo || !AsyncInfo->Queue)
return Plugin::error("Invalid async info queue");
return synchronizeImpl(*AsyncInfo);
}
Error GenericDeviceTy::queryAsync(__tgt_async_info *AsyncInfo) {
if (!AsyncInfo || !AsyncInfo->Queue)
return Plugin::error("Invalid async info queue");
return queryAsyncImpl(*AsyncInfo);
}
Expected<void *> GenericDeviceTy::dataAlloc(int64_t Size, void *HostPtr,
TargetAllocTy Kind) {
void *Alloc = nullptr;
if (RecordReplay.isRecordingOrReplaying())
return RecordReplay.alloc(Size);
switch (Kind) {
case TARGET_ALLOC_DEFAULT:
case TARGET_ALLOC_DEVICE:
if (MemoryManager) {
Alloc = MemoryManager->allocate(Size, HostPtr);
if (!Alloc)
return Plugin::error("Failed to allocate from memory manager");
break;
}
[[fallthrough]];
case TARGET_ALLOC_HOST:
case TARGET_ALLOC_SHARED:
Alloc = allocate(Size, HostPtr, Kind);
if (!Alloc)
return Plugin::error("Failed to allocate from device allocator");
}
// Report error if the memory manager or the device allocator did not return
// any memory buffer.
if (!Alloc)
return Plugin::error("Invalid target data allocation kind or requested "
"allocator not implemented yet");
// Register allocated buffer as pinned memory if the type is host memory.
if (Kind == TARGET_ALLOC_HOST)
if (auto Err = PinnedAllocs.registerHostBuffer(Alloc, Alloc, Size))
return Err;
return Alloc;
}
Error GenericDeviceTy::dataDelete(void *TgtPtr, TargetAllocTy Kind) {
// Free is a noop when recording or replaying.
if (RecordReplay.isRecordingOrReplaying())
return Plugin::success();
int Res;
if (MemoryManager)
Res = MemoryManager->free(TgtPtr);
else
Res = free(TgtPtr, Kind);
if (Res)
return Plugin::error("Failure to deallocate device pointer %p", TgtPtr);
// Unregister deallocated pinned memory buffer if the type is host memory.
if (Kind == TARGET_ALLOC_HOST)
if (auto Err = PinnedAllocs.unregisterHostBuffer(TgtPtr))
return Err;
return Plugin::success();
}
Error GenericDeviceTy::dataSubmit(void *TgtPtr, const void *HstPtr,
int64_t Size, __tgt_async_info *AsyncInfo) {
auto Err = Plugin::success();
AsyncInfoWrapperTy AsyncInfoWrapper(Err, *this, AsyncInfo);
Err = dataSubmitImpl(TgtPtr, HstPtr, Size, AsyncInfoWrapper);
return Err;
}
Error GenericDeviceTy::dataRetrieve(void *HstPtr, const void *TgtPtr,
int64_t Size, __tgt_async_info *AsyncInfo) {
auto Err = Plugin::success();
AsyncInfoWrapperTy AsyncInfoWrapper(Err, *this, AsyncInfo);
Err = dataRetrieveImpl(HstPtr, TgtPtr, Size, AsyncInfoWrapper);
return Err;
}
Error GenericDeviceTy::dataExchange(const void *SrcPtr, GenericDeviceTy &DstDev,
void *DstPtr, int64_t Size,
__tgt_async_info *AsyncInfo) {
auto Err = Plugin::success();
AsyncInfoWrapperTy AsyncInfoWrapper(Err, *this, AsyncInfo);
Err = dataExchangeImpl(SrcPtr, DstDev, DstPtr, Size, AsyncInfoWrapper);
return Err;
}
Error GenericDeviceTy::launchKernel(void *EntryPtr, void **ArgPtrs,
ptrdiff_t *ArgOffsets,
KernelArgsTy &KernelArgs,
__tgt_async_info *AsyncInfo) {
auto Err = Plugin::success();
AsyncInfoWrapperTy AsyncInfoWrapper(Err, *this, AsyncInfo);
GenericKernelTy &GenericKernel =
*reinterpret_cast<GenericKernelTy *>(EntryPtr);
if (RecordReplay.isRecording())
RecordReplay.saveKernelInputInfo(
GenericKernel.getName(), ArgPtrs, ArgOffsets, KernelArgs.NumArgs,
KernelArgs.NumTeams[0], KernelArgs.ThreadLimit[0], KernelArgs.Tripcount,
AsyncInfoWrapper);
Err = GenericKernel.launch(*this, ArgPtrs, ArgOffsets, KernelArgs,
AsyncInfoWrapper);
if (RecordReplay.isRecordingOrReplaying() &&
RecordReplay.isSaveOutputEnabled())
RecordReplay.saveKernelOutputInfo(GenericKernel.getName(),
AsyncInfoWrapper);
return Err;
}
Error GenericDeviceTy::initAsyncInfo(__tgt_async_info **AsyncInfoPtr) {
assert(AsyncInfoPtr && "Invalid async info");
*AsyncInfoPtr = new __tgt_async_info();
auto Err = Plugin::success();
AsyncInfoWrapperTy AsyncInfoWrapper(Err, *this, *AsyncInfoPtr);
Err = initAsyncInfoImpl(AsyncInfoWrapper);
return Err;
}
Error GenericDeviceTy::initDeviceInfo(__tgt_device_info *DeviceInfo) {
assert(DeviceInfo && "Invalid device info");
return initDeviceInfoImpl(DeviceInfo);
}
Error GenericDeviceTy::printInfo() {
// TODO: Print generic information here
return printInfoImpl();
}
Error GenericDeviceTy::createEvent(void **EventPtrStorage) {
return createEventImpl(EventPtrStorage);
}
Error GenericDeviceTy::destroyEvent(void *EventPtr) {
return destroyEventImpl(EventPtr);
}
Error GenericDeviceTy::recordEvent(void *EventPtr,
__tgt_async_info *AsyncInfo) {
auto Err = Plugin::success();
AsyncInfoWrapperTy AsyncInfoWrapper(Err, *this, AsyncInfo);
Err = recordEventImpl(EventPtr, AsyncInfoWrapper);
return Err;
}
Error GenericDeviceTy::waitEvent(void *EventPtr, __tgt_async_info *AsyncInfo) {
auto Err = Plugin::success();
AsyncInfoWrapperTy AsyncInfoWrapper(Err, *this, AsyncInfo);
Err = waitEventImpl(EventPtr, AsyncInfoWrapper);
return Err;
}
Error GenericDeviceTy::syncEvent(void *EventPtr) {
return syncEventImpl(EventPtr);
}
Error GenericPluginTy::init() {
auto NumDevicesOrErr = initImpl();
if (!NumDevicesOrErr)
return NumDevicesOrErr.takeError();
NumDevices = *NumDevicesOrErr;
if (NumDevices == 0)
return Plugin::success();
assert(Devices.size() == 0 && "Plugin already initialized");
Devices.resize(NumDevices, nullptr);
GlobalHandler = Plugin::createGlobalHandler();
assert(GlobalHandler && "Invalid global handler");
return Plugin::success();
}
Error GenericPluginTy::deinit() {
// There is no global handler if no device is available.
if (GlobalHandler)
delete GlobalHandler;
// Deinitialize all active devices.
for (int32_t DeviceId = 0; DeviceId < NumDevices; ++DeviceId) {
if (Devices[DeviceId]) {
if (auto Err = deinitDevice(DeviceId))
return Err;
}
assert(!Devices[DeviceId] && "Device was not deinitialized");
}
// Perform last deinitializations on the plugin.
return deinitImpl();
}
Error GenericPluginTy::initDevice(int32_t DeviceId) {
assert(!Devices[DeviceId] && "Device already initialized");
// Create the device and save the reference.
GenericDeviceTy *Device = Plugin::createDevice(DeviceId, NumDevices);
assert(Device && "Invalid device");
// Save the device reference into the list.
Devices[DeviceId] = Device;
// Initialize the device and its resources.
return Device->init(*this);
}
Error GenericPluginTy::deinitDevice(int32_t DeviceId) {
// The device may be already deinitialized.
if (Devices[DeviceId] == nullptr)
return Plugin::success();
// Deinitialize the device and release its resources.
if (auto Err = Devices[DeviceId]->deinit())
return Err;
// Delete the device and invalidate its reference.
delete Devices[DeviceId];
Devices[DeviceId] = nullptr;
return Plugin::success();
}
/// Exposed library API function, basically wrappers around the GenericDeviceTy
/// functionality with the same name. All non-async functions are redirected
/// to the async versions right away with a NULL AsyncInfoPtr.
#ifdef __cplusplus
extern "C" {
#endif
int32_t __tgt_rtl_init_plugin() {
auto Err = Plugin::initIfNeeded();
if (Err) {
REPORT("Failure to initialize plugin " GETNAME(TARGET_NAME) ": %s\n",
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_deinit_plugin() {
auto Err = Plugin::deinitIfNeeded();
if (Err) {
REPORT("Failure to deinitialize plugin " GETNAME(TARGET_NAME) ": %s\n",
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *TgtImage) {
if (!Plugin::isActive())
return false;
if (elf_check_machine(TgtImage, Plugin::get().getMagicElfBits()))
return true;
return Plugin::get().getJIT().checkBitcodeImage(*TgtImage);
}
int32_t __tgt_rtl_is_valid_binary_info(__tgt_device_image *TgtImage,
__tgt_image_info *Info) {
if (!Plugin::isActive())
return false;
if (!__tgt_rtl_is_valid_binary(TgtImage))
return false;
// A subarchitecture was not specified. Assume it is compatible.
if (!Info->Arch)
return true;
// Check the compatibility with all the available devices. Notice the
// devices may not be initialized yet.
auto CompatibleOrErr = Plugin::get().isImageCompatible(Info);
if (!CompatibleOrErr) {
// This error should not abort the execution, so we just inform the user
// through the debug system.
std::string ErrString = toString(CompatibleOrErr.takeError());
DP("Failure to check whether image %p is valid: %s\n", TgtImage,
ErrString.data());
return false;
}
bool Compatible = *CompatibleOrErr;
DP("Image is %scompatible with current environment: %s\n",
(Compatible) ? "" : "not", Info->Arch);
return Compatible;
}
int32_t __tgt_rtl_supports_empty_images() {
return Plugin::get().supportsEmptyImages();
}
int32_t __tgt_rtl_init_device(int32_t DeviceId) {
auto Err = Plugin::get().initDevice(DeviceId);
if (Err) {
REPORT("Failure to initialize device %d: %s\n", DeviceId,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_deinit_device(int32_t DeviceId) {
auto Err = Plugin::get().deinitDevice(DeviceId);
if (Err) {
REPORT("Failure to deinitialize device %d: %s\n", DeviceId,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_number_of_devices() { return Plugin::get().getNumDevices(); }
int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) {
Plugin::get().setRequiresFlag(RequiresFlags);
return RequiresFlags;
}
int32_t __tgt_rtl_is_data_exchangable(int32_t SrcDeviceId,
int32_t DstDeviceId) {
return Plugin::get().isDataExchangable(SrcDeviceId, DstDeviceId);
}
__tgt_target_table *__tgt_rtl_load_binary(int32_t DeviceId,
__tgt_device_image *TgtImage) {
GenericPluginTy &Plugin = Plugin::get();
GenericDeviceTy &Device = Plugin.getDevice(DeviceId);
auto TableOrErr = Device.loadBinary(Plugin, TgtImage);
if (!TableOrErr) {
auto Err = TableOrErr.takeError();
REPORT("Failure to load binary image %p on device %d: %s\n", TgtImage,
DeviceId, toString(std::move(Err)).data());
return nullptr;
}
__tgt_target_table *Table = *TableOrErr;
assert(Table != nullptr && "Invalid table");
return Table;
}
void *__tgt_rtl_data_alloc(int32_t DeviceId, int64_t Size, void *HostPtr,
int32_t Kind) {
auto AllocOrErr = Plugin::get().getDevice(DeviceId).dataAlloc(
Size, HostPtr, (TargetAllocTy)Kind);
if (!AllocOrErr) {
auto Err = AllocOrErr.takeError();
REPORT("Failure to allocate device memory: %s\n",
toString(std::move(Err)).data());
return nullptr;
}
assert(*AllocOrErr && "Null pointer upon successful allocation");
return *AllocOrErr;
}
int32_t __tgt_rtl_data_delete(int32_t DeviceId, void *TgtPtr, int32_t Kind) {
auto Err =
Plugin::get().getDevice(DeviceId).dataDelete(TgtPtr, (TargetAllocTy)Kind);
if (Err) {
REPORT("Failure to deallocate device pointer %p: %s\n", TgtPtr,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_data_lock(int32_t DeviceId, void *Ptr, int64_t Size,
void **LockedPtr) {
auto LockedPtrOrErr = Plugin::get().getDevice(DeviceId).dataLock(Ptr, Size);
if (!LockedPtrOrErr) {
auto Err = LockedPtrOrErr.takeError();
REPORT("Failure to lock memory %p: %s\n", Ptr,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
if (!(*LockedPtrOrErr)) {
REPORT("Failure to lock memory %p: obtained a null locked pointer\n", Ptr);
return OFFLOAD_FAIL;
}
*LockedPtr = *LockedPtrOrErr;
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_data_unlock(int32_t DeviceId, void *Ptr) {
auto Err = Plugin::get().getDevice(DeviceId).dataUnlock(Ptr);
if (Err) {
REPORT("Failure to unlock memory %p: %s\n", Ptr,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_data_submit(int32_t DeviceId, void *TgtPtr, void *HstPtr,
int64_t Size) {
return __tgt_rtl_data_submit_async(DeviceId, TgtPtr, HstPtr, Size,
/* AsyncInfoPtr */ nullptr);
}
int32_t __tgt_rtl_data_submit_async(int32_t DeviceId, void *TgtPtr,
void *HstPtr, int64_t Size,
__tgt_async_info *AsyncInfoPtr) {
auto Err = Plugin::get().getDevice(DeviceId).dataSubmit(TgtPtr, HstPtr, Size,
AsyncInfoPtr);
if (Err) {
REPORT("Failure to copy data from host to device. Pointers: host "
"= " DPxMOD ", device = " DPxMOD ", size = %" PRId64 ": %s\n",
DPxPTR(HstPtr), DPxPTR(TgtPtr), Size,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_data_retrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr,
int64_t Size) {
return __tgt_rtl_data_retrieve_async(DeviceId, HstPtr, TgtPtr, Size,
/* AsyncInfoPtr */ nullptr);
}
int32_t __tgt_rtl_data_retrieve_async(int32_t DeviceId, void *HstPtr,
void *TgtPtr, int64_t Size,
__tgt_async_info *AsyncInfoPtr) {
auto Err = Plugin::get().getDevice(DeviceId).dataRetrieve(HstPtr, TgtPtr,
Size, AsyncInfoPtr);
if (Err) {
REPORT("Faliure to copy data from device to host. Pointers: host "
"= " DPxMOD ", device = " DPxMOD ", size = %" PRId64 ": %s\n",
DPxPTR(HstPtr), DPxPTR(TgtPtr), Size,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_data_exchange(int32_t SrcDeviceId, void *SrcPtr,
int32_t DstDeviceId, void *DstPtr,
int64_t Size) {
return __tgt_rtl_data_exchange_async(SrcDeviceId, SrcPtr, DstDeviceId, DstPtr,
Size, /* AsyncInfoPtr */ nullptr);
}
int32_t __tgt_rtl_data_exchange_async(int32_t SrcDeviceId, void *SrcPtr,
int DstDeviceId, void *DstPtr,
int64_t Size,
__tgt_async_info *AsyncInfo) {
GenericDeviceTy &SrcDevice = Plugin::get().getDevice(SrcDeviceId);
GenericDeviceTy &DstDevice = Plugin::get().getDevice(DstDeviceId);
auto Err = SrcDevice.dataExchange(SrcPtr, DstDevice, DstPtr, Size, AsyncInfo);
if (Err) {
REPORT("Failure to copy data from device (%d) to device (%d). Pointers: "
"host = " DPxMOD ", device = " DPxMOD ", size = %" PRId64 ": %s\n",
SrcDeviceId, DstDeviceId, DPxPTR(SrcPtr), DPxPTR(DstPtr), Size,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_launch_kernel(int32_t DeviceId, void *TgtEntryPtr,
void **TgtArgs, ptrdiff_t *TgtOffsets,
KernelArgsTy *KernelArgs,
__tgt_async_info *AsyncInfoPtr) {
auto Err = Plugin::get().getDevice(DeviceId).launchKernel(
TgtEntryPtr, TgtArgs, TgtOffsets, *KernelArgs, AsyncInfoPtr);
if (Err) {
REPORT("Failure to run target region " DPxMOD " in device %d: %s\n",
DPxPTR(TgtEntryPtr), DeviceId, toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_synchronize(int32_t DeviceId,
__tgt_async_info *AsyncInfoPtr) {
auto Err = Plugin::get().getDevice(DeviceId).synchronize(AsyncInfoPtr);
if (Err) {
REPORT("Failure to synchronize stream %p: %s\n", AsyncInfoPtr->Queue,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_query_async(int32_t DeviceId,
__tgt_async_info *AsyncInfoPtr) {
auto Err = Plugin::get().getDevice(DeviceId).queryAsync(AsyncInfoPtr);
if (Err) {
REPORT("Failure to query stream %p: %s\n", AsyncInfoPtr->Queue,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
void __tgt_rtl_print_device_info(int32_t DeviceId) {
if (auto Err = Plugin::get().getDevice(DeviceId).printInfo())
REPORT("Failure to print device %d info: %s\n", DeviceId,
toString(std::move(Err)).data());
}
int32_t __tgt_rtl_create_event(int32_t DeviceId, void **EventPtr) {
auto Err = Plugin::get().getDevice(DeviceId).createEvent(EventPtr);
if (Err) {
REPORT("Failure to create event: %s\n", toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_record_event(int32_t DeviceId, void *EventPtr,
__tgt_async_info *AsyncInfoPtr) {
auto Err =
Plugin::get().getDevice(DeviceId).recordEvent(EventPtr, AsyncInfoPtr);
if (Err) {
REPORT("Failure to record event %p: %s\n", EventPtr,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_wait_event(int32_t DeviceId, void *EventPtr,
__tgt_async_info *AsyncInfoPtr) {
auto Err =
Plugin::get().getDevice(DeviceId).waitEvent(EventPtr, AsyncInfoPtr);
if (Err) {
REPORT("Failure to wait event %p: %s\n", EventPtr,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_sync_event(int32_t DeviceId, void *EventPtr) {
auto Err = Plugin::get().getDevice(DeviceId).syncEvent(EventPtr);
if (Err) {
REPORT("Failure to synchronize event %p: %s\n", EventPtr,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_destroy_event(int32_t DeviceId, void *EventPtr) {
auto Err = Plugin::get().getDevice(DeviceId).destroyEvent(EventPtr);
if (Err) {
REPORT("Failure to destroy event %p: %s\n", EventPtr,
toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
void __tgt_rtl_set_info_flag(uint32_t NewInfoLevel) {
std::atomic<uint32_t> &InfoLevel = getInfoLevelInternal();
InfoLevel.store(NewInfoLevel);
}
int32_t __tgt_rtl_init_async_info(int32_t DeviceId,
__tgt_async_info **AsyncInfoPtr) {
assert(AsyncInfoPtr && "Invalid async info");
auto Err = Plugin::get().getDevice(DeviceId).initAsyncInfo(AsyncInfoPtr);
if (Err) {
REPORT("Failure to initialize async info at " DPxMOD " on device %d: %s\n",
DPxPTR(*AsyncInfoPtr), DeviceId, toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_init_device_info(int32_t DeviceId,
__tgt_device_info *DeviceInfo,
const char **ErrStr) {
*ErrStr = "";
auto Err = Plugin::get().getDevice(DeviceId).initDeviceInfo(DeviceInfo);
if (Err) {
REPORT("Failure to initialize device info at " DPxMOD " on device %d: %s\n",
DPxPTR(DeviceInfo), DeviceId, toString(std::move(Err)).data());
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
#ifdef __cplusplus
}
#endif
|