1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
|
//===--- amdgpu/impl/system.cpp ----------------------------------- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Object/ELF.h"
#include "llvm/Object/ELFObjectFile.h"
#include <cassert>
#include <sstream>
#include <string>
#include "internal.h"
#include "rt.h"
#include "msgpack.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
namespace hsa {
// Wrap HSA iterate API in a shim that allows passing general callables
template <typename C>
hsa_status_t executable_iterate_symbols(hsa_executable_t executable, C cb) {
auto L = [](hsa_executable_t executable, hsa_executable_symbol_t symbol,
void *data) -> hsa_status_t {
C *unwrapped = static_cast<C *>(data);
return (*unwrapped)(executable, symbol);
};
return hsa_executable_iterate_symbols(executable, L,
static_cast<void *>(&cb));
}
} // namespace hsa
typedef unsigned char *address;
/*
* Note descriptors.
*/
// FreeBSD already declares Elf_Note (indirectly via <libelf.h>)
#if !defined(__FreeBSD__)
typedef struct {
uint32_t n_namesz; /* Length of note's name. */
uint32_t n_descsz; /* Length of note's value. */
uint32_t n_type; /* Type of note. */
// then name
// then padding, optional
// then desc, at 4 byte alignment (not 8, despite being elf64)
} Elf_Note;
#endif
class KernelArgMD {
public:
enum class ValueKind {
HiddenGlobalOffsetX,
HiddenGlobalOffsetY,
HiddenGlobalOffsetZ,
HiddenNone,
HiddenPrintfBuffer,
HiddenDefaultQueue,
HiddenCompletionAction,
HiddenMultiGridSyncArg,
HiddenHostcallBuffer,
HiddenHeapV1,
Unknown
};
KernelArgMD()
: name_(std::string()), size_(0), offset_(0),
valueKind_(ValueKind::Unknown) {}
// fields
std::string name_;
uint32_t size_;
uint32_t offset_;
ValueKind valueKind_;
};
static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
// v3
// {"by_value", KernelArgMD::ValueKind::ByValue},
// {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
// {"dynamic_shared_pointer",
// KernelArgMD::ValueKind::DynamicSharedPointer},
// {"sampler", KernelArgMD::ValueKind::Sampler},
// {"image", KernelArgMD::ValueKind::Image},
// {"pipe", KernelArgMD::ValueKind::Pipe},
// {"queue", KernelArgMD::ValueKind::Queue},
{"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
{"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
{"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
{"hidden_none", KernelArgMD::ValueKind::HiddenNone},
{"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
{"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
{"hidden_completion_action",
KernelArgMD::ValueKind::HiddenCompletionAction},
{"hidden_multigrid_sync_arg",
KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
{"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
{"hidden_heap_v1", KernelArgMD::ValueKind::HiddenHeapV1}};
namespace core {
hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
// memory_fault.agent
// memory_fault.virtual_address
// memory_fault.fault_reason_mask
// fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
std::stringstream stream;
stream << std::hex << (uintptr_t)memory_fault.virtual_address;
std::string addr("0x" + stream.str());
std::string err_string = "[GPU Memory Error] Addr: " + addr;
err_string += " Reason: ";
if (!(memory_fault.fault_reason_mask & 0x00111111)) {
err_string += "No Idea! ";
} else {
if (memory_fault.fault_reason_mask & 0x00000001)
err_string += "Page not present or supervisor privilege. ";
if (memory_fault.fault_reason_mask & 0x00000010)
err_string += "Write access to a read-only page. ";
if (memory_fault.fault_reason_mask & 0x00000100)
err_string += "Execute access to a page marked NX. ";
if (memory_fault.fault_reason_mask & 0x00001000)
err_string += "Host access only. ";
if (memory_fault.fault_reason_mask & 0x00010000)
err_string += "ECC failure (if supported by HW). ";
if (memory_fault.fault_reason_mask & 0x00100000)
err_string += "Can't determine the exact fault address. ";
}
fprintf(stderr, "%s\n", err_string.c_str());
return HSA_STATUS_ERROR;
}
return HSA_STATUS_SUCCESS;
}
hsa_status_t atl_init_gpu_context() {
hsa_status_t err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Registering the system for memory faults", get_error_string(err));
return HSA_STATUS_ERROR;
}
return HSA_STATUS_SUCCESS;
}
static bool isImplicit(KernelArgMD::ValueKind value_kind) {
switch (value_kind) {
case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
case KernelArgMD::ValueKind::HiddenNone:
case KernelArgMD::ValueKind::HiddenPrintfBuffer:
case KernelArgMD::ValueKind::HiddenDefaultQueue:
case KernelArgMD::ValueKind::HiddenCompletionAction:
case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
case KernelArgMD::ValueKind::HiddenHostcallBuffer:
case KernelArgMD::ValueKind::HiddenHeapV1:
return true;
default:
return false;
}
}
static std::pair<const unsigned char *, const unsigned char *>
findMetadata(const ELFObjectFile<ELF64LE> &ELFObj) {
constexpr std::pair<const unsigned char *, const unsigned char *> Failure = {
nullptr, nullptr};
const auto &Elf = ELFObj.getELFFile();
auto PhdrsOrErr = Elf.program_headers();
if (!PhdrsOrErr) {
consumeError(PhdrsOrErr.takeError());
return Failure;
}
for (auto Phdr : *PhdrsOrErr) {
if (Phdr.p_type != PT_NOTE)
continue;
Error Err = Error::success();
for (auto Note : Elf.notes(Phdr, Err)) {
if (Note.getType() == 7 || Note.getType() == 8)
return Failure;
// Code object v2 uses yaml metadata and is no longer supported.
if (Note.getType() == NT_AMD_HSA_METADATA && Note.getName() == "AMD")
return Failure;
// Code object v3 should have AMDGPU metadata.
if (Note.getType() == NT_AMDGPU_METADATA && Note.getName() != "AMDGPU")
return Failure;
ArrayRef<uint8_t> Desc = Note.getDesc();
return {Desc.data(), Desc.data() + Desc.size()};
}
if (Err) {
consumeError(std::move(Err));
return Failure;
}
}
return Failure;
}
static std::pair<const unsigned char *, const unsigned char *>
find_metadata(void *binary, size_t binSize) {
constexpr std::pair<const unsigned char *, const unsigned char *> Failure = {
nullptr, nullptr};
StringRef Buffer = StringRef(static_cast<const char *>(binary), binSize);
auto ElfOrErr = ObjectFile::createELFObjectFile(MemoryBufferRef(Buffer, ""),
/*InitContent=*/false);
if (!ElfOrErr) {
consumeError(ElfOrErr.takeError());
return Failure;
}
if (const auto *ELFObj = dyn_cast<ELF64LEObjectFile>(ElfOrErr->get()))
return findMetadata(*ELFObj);
return Failure;
}
namespace {
int map_lookup_array(msgpack::byte_range message, const char *needle,
msgpack::byte_range *res, uint64_t *size) {
unsigned count = 0;
struct s : msgpack::functors_defaults<s> {
s(unsigned &count, uint64_t *size) : count(count), size(size) {}
unsigned &count;
uint64_t *size;
const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
count++;
*size = N;
return bytes.end;
}
};
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
// If the message is an array, record number of
// elements in *size
msgpack::handle_msgpack<s>(value, {count, size});
// return the whole array
*res = value;
}
});
// Only claim success if exactly one key/array pair matched
return count != 1;
}
int map_lookup_string(msgpack::byte_range message, const char *needle,
std::string *res) {
unsigned count = 0;
struct s : public msgpack::functors_defaults<s> {
s(unsigned &count, std::string *res) : count(count), res(res) {}
unsigned &count;
std::string *res;
void handle_string(size_t N, const unsigned char *str) {
count++;
*res = std::string(str, str + N);
}
};
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
msgpack::handle_msgpack<s>(value, {count, res});
}
});
return count != 1;
}
int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
uint64_t *res) {
unsigned count = 0;
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
msgpack::foronly_unsigned(value, [&](uint64_t x) {
count++;
*res = x;
});
}
});
return count != 1;
}
int array_lookup_element(msgpack::byte_range message, uint64_t elt,
msgpack::byte_range *res) {
int rc = 1;
uint64_t i = 0;
msgpack::foreach_array(message, [&](msgpack::byte_range value) {
if (i == elt) {
*res = value;
rc = 0;
}
i++;
});
return rc;
}
int populate_kernelArgMD(msgpack::byte_range args_element,
KernelArgMD *kernelarg) {
using namespace msgpack;
int error = 0;
foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
if (message_is_string(key, ".name")) {
foronly_string(value, [&](size_t N, const unsigned char *str) {
kernelarg->name_ = std::string(str, str + N);
});
} else if (message_is_string(key, ".size")) {
foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
} else if (message_is_string(key, ".offset")) {
foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
} else if (message_is_string(key, ".value_kind")) {
foronly_string(value, [&](size_t N, const unsigned char *str) {
std::string s = std::string(str, str + N);
auto itValueKind = ArgValueKind.find(s);
if (itValueKind != ArgValueKind.end()) {
kernelarg->valueKind_ = itValueKind->second;
}
});
}
});
return error;
}
} // namespace
static hsa_status_t get_code_object_custom_metadata(
void *binary, size_t binSize,
std::map<std::string, atl_kernel_info_t> &KernelInfoTable) {
// parse code object with different keys from v2
// also, the kernel name is not the same as the symbol name -- so a
// symbol->name map is needed
std::pair<const unsigned char *, const unsigned char *> metadata =
find_metadata(binary, binSize);
if (!metadata.first) {
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
uint64_t kernelsSize = 0;
int msgpack_errors = 0;
msgpack::byte_range kernel_array;
msgpack_errors =
map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
&kernel_array, &kernelsSize);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"kernels lookup in program metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
for (size_t i = 0; i < kernelsSize; i++) {
assert(msgpack_errors == 0);
std::string kernelName;
std::string symbolName;
msgpack::byte_range element;
msgpack_errors += array_lookup_element(kernel_array, i, &element);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"element lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
msgpack_errors += map_lookup_string(element, ".name", &kernelName);
msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"strings lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
// Make sure that kernelName + ".kd" == symbolName
if ((kernelName + ".kd") != symbolName) {
printf("[%s:%d] Kernel name mismatching symbol: %s != %s + .kd\n",
__FILE__, __LINE__, symbolName.c_str(), kernelName.c_str());
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count;
msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"sgpr count metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.sgpr_count = sgpr_count;
msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"vgpr count metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.vgpr_count = vgpr_count;
msgpack_errors +=
map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"sgpr spill count metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.sgpr_spill_count = sgpr_spill_count;
msgpack_errors +=
map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"vgpr spill count metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
info.vgpr_spill_count = vgpr_spill_count;
size_t kernel_explicit_args_size = 0;
uint64_t kernel_segment_size;
msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
&kernel_segment_size);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"kernarg segment size metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
bool hasHiddenArgs = false;
if (kernel_segment_size > 0) {
uint64_t argsSize;
size_t offset = 0;
msgpack::byte_range args_array;
msgpack_errors +=
map_lookup_array(element, ".args", &args_array, &argsSize);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"kernel args metadata lookup in kernel metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
for (size_t i = 0; i < argsSize; ++i) {
KernelArgMD lcArg;
msgpack::byte_range args_element;
msgpack_errors += array_lookup_element(args_array, i, &args_element);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"iterate args map in kernel args metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
if (msgpack_errors != 0) {
printf("[%s:%d] %s failed\n", __FILE__, __LINE__,
"iterate args map in kernel args metadata");
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
// v3 has offset field and not align field
size_t new_offset = lcArg.offset_;
size_t padding = new_offset - offset;
offset = new_offset;
DP("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(), lcArg.size_,
lcArg.offset_);
offset += lcArg.size_;
// check if the arg is a hidden/implicit arg
// this logic assumes that all hidden args are 8-byte aligned
if (!isImplicit(lcArg.valueKind_)) {
info.explicit_argument_count++;
kernel_explicit_args_size += lcArg.size_;
} else {
info.implicit_argument_count++;
hasHiddenArgs = true;
}
kernel_explicit_args_size += padding;
}
}
// TODO: Probably don't want this arithmetic
info.kernel_segment_size =
(hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size);
DP("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
kernel_segment_size, info.kernel_segment_size);
// kernel received, now add it to the kernel info table
KernelInfoTable[kernelName] = info;
}
return HSA_STATUS_SUCCESS;
}
static hsa_status_t
populate_InfoTables(hsa_executable_symbol_t symbol,
std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
std::map<std::string, atl_symbol_info_t> &SymbolInfoTable) {
hsa_symbol_kind_t type;
uint32_t name_length;
hsa_status_t err;
err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
&type);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
DP("Exec Symbol type: %d\n", type);
if (type == HSA_SYMBOL_KIND_KERNEL) {
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
char *name = reinterpret_cast<char *>(malloc(name_length + 1));
err = hsa_executable_symbol_get_info(symbol,
HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
// remove the suffix .kd from symbol name.
name[name_length - 3] = 0;
atl_kernel_info_t info;
std::string kernelName(name);
// by now, the kernel info table should already have an entry
// because the non-ROCr custom code object parsing is called before
// iterating over the code object symbols using ROCr
if (KernelInfoTable.find(kernelName) == KernelInfoTable.end()) {
DP("amdgpu internal consistency error\n");
return HSA_STATUS_ERROR;
}
// found, so assign and update
info = KernelInfoTable[kernelName];
/* Extract dispatch information from the symbol */
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
&(info.kernel_object));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Extracting the symbol from the executable",
get_error_string(err));
return err;
}
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
&(info.group_segment_size));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Extracting the group segment size from the executable",
get_error_string(err));
return err;
}
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
&(info.private_segment_size));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Extracting the private segment from the executable",
get_error_string(err));
return err;
}
DP("Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
"kernarg\n",
kernelName.c_str(), info.kernel_object, info.group_segment_size,
info.private_segment_size, info.kernel_segment_size);
// assign it back to the kernel info table
KernelInfoTable[kernelName] = info;
free(name);
} else if (type == HSA_SYMBOL_KIND_VARIABLE) {
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
char *name = reinterpret_cast<char *>(malloc(name_length + 1));
err = hsa_executable_symbol_get_info(symbol,
HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info extraction", get_error_string(err));
return err;
}
name[name_length] = 0;
atl_symbol_info_t info;
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info address extraction", get_error_string(err));
return err;
}
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Symbol info size extraction", get_error_string(err));
return err;
}
DP("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr, info.size);
SymbolInfoTable[std::string(name)] = info;
free(name);
} else {
DP("Symbol is an indirect function\n");
}
return HSA_STATUS_SUCCESS;
}
hsa_status_t RegisterModuleFromMemory(
std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
void *module_bytes, size_t module_size, hsa_agent_t agent,
hsa_status_t (*on_deserialized_data)(void *data, size_t size,
void *cb_state),
void *cb_state, std::vector<hsa_executable_t> &HSAExecutables) {
hsa_status_t err;
hsa_executable_t executable = {0};
hsa_profile_t agent_profile;
err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Query the agent profile", get_error_string(err));
return HSA_STATUS_ERROR;
}
// FIXME: Assume that every profile is FULL until we understand how to build
// GCN with base profile
agent_profile = HSA_PROFILE_FULL;
/* Create the empty executable. */
err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
&executable);
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Create the executable", get_error_string(err));
return HSA_STATUS_ERROR;
}
bool module_load_success = false;
do // Existing control flow used continue, preserve that for this patch
{
{
// Some metadata info is not available through ROCr API, so use custom
// code object metadata parsing to collect such metadata info
err = get_code_object_custom_metadata(module_bytes, module_size,
KernelInfoTable);
if (err != HSA_STATUS_SUCCESS) {
DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Getting custom code object metadata", get_error_string(err));
continue;
}
// Deserialize code object.
hsa_code_object_t code_object = {0};
err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
&code_object);
if (err != HSA_STATUS_SUCCESS) {
DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Code Object Deserialization", get_error_string(err));
continue;
}
assert(0 != code_object.handle);
// Mutating the device image here avoids another allocation & memcpy
void *code_object_alloc_data =
reinterpret_cast<void *>(code_object.handle);
hsa_status_t impl_err =
on_deserialized_data(code_object_alloc_data, module_size, cb_state);
if (impl_err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Error in deserialized_data callback",
get_error_string(impl_err));
return impl_err;
}
/* Load the code object. */
err =
hsa_executable_load_code_object(executable, agent, code_object, NULL);
if (err != HSA_STATUS_SUCCESS) {
DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Loading the code object", get_error_string(err));
continue;
}
// cannot iterate over symbols until executable is frozen
}
module_load_success = true;
} while (0);
DP("Modules loaded successful? %d\n", module_load_success);
if (module_load_success) {
/* Freeze the executable; it can now be queried for symbols. */
err = hsa_executable_freeze(executable, "");
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Freeze the executable", get_error_string(err));
return HSA_STATUS_ERROR;
}
err = hsa::executable_iterate_symbols(
executable,
[&](hsa_executable_t, hsa_executable_symbol_t symbol) -> hsa_status_t {
return populate_InfoTables(symbol, KernelInfoTable, SymbolInfoTable);
});
if (err != HSA_STATUS_SUCCESS) {
printf("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Iterating over symbols for execuatable", get_error_string(err));
return HSA_STATUS_ERROR;
}
// save the executable and destroy during finalize
HSAExecutables.push_back(executable);
return HSA_STATUS_SUCCESS;
} else {
return HSA_STATUS_ERROR;
}
}
} // namespace core
|