| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 
 | /*
 * Copyright 2010      INRIA Saclay
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
 * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
 * 91893 Orsay, France 
 */
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl_bound.h>
#include <isl_bernstein.h>
#include <isl_range.h>
#include <isl_polynomial_private.h>
#include <isl_options_private.h>
/* Given a polynomial "poly" that is constant in terms
 * of the domain variables, construct a polynomial reduction
 * of type "type" that is equal to "poly" on "bset",
 * with the domain projected onto the parameters.
 */
__isl_give isl_pw_qpolynomial_fold *isl_qpolynomial_cst_bound(
	__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly,
	enum isl_fold type, isl_bool *tight)
{
	isl_set *dom;
	isl_qpolynomial_fold *fold;
	isl_pw_qpolynomial_fold *pwf;
	fold = isl_qpolynomial_fold_alloc(type, poly);
	dom = isl_set_from_basic_set(bset);
	if (tight)
		*tight = isl_bool_true;
	pwf = isl_pw_qpolynomial_fold_alloc(type, dom, fold);
	return isl_pw_qpolynomial_fold_project_domain_on_params(pwf);
}
/* Add the bound "pwf", which is not known to be tight,
 * to the output of "bound".
 */
isl_stat isl_bound_add(struct isl_bound *bound,
	__isl_take isl_pw_qpolynomial_fold *pwf)
{
	bound->pwf = isl_pw_qpolynomial_fold_fold(bound->pwf, pwf);
	return isl_stat_non_null(bound->pwf);
}
/* Add the bound "pwf", which is known to be tight,
 * to the output of "bound".
 */
isl_stat isl_bound_add_tight(struct isl_bound *bound,
	__isl_take isl_pw_qpolynomial_fold *pwf)
{
	bound->pwf_tight = isl_pw_qpolynomial_fold_fold(bound->pwf_tight, pwf);
	return isl_stat_non_null(bound->pwf);
}
/* Given a polynomial "poly" that is constant in terms
 * of the domain variables and the domain "bset",
 * construct the corresponding polynomial reduction and
 * add it to the tight bounds of "bound".
 */
static isl_stat add_constant_poly(__isl_take isl_basic_set *bset,
	__isl_take isl_qpolynomial *poly, struct isl_bound *bound)
{
	isl_pw_qpolynomial_fold *pwf;
	pwf = isl_qpolynomial_cst_bound(bset, poly, bound->type, NULL);
	return isl_bound_add_tight(bound, pwf);
}
/* Compute a bound on the polynomial defined over the parametric polytope
 * using either range propagation or bernstein expansion and
 * store the result in bound->pwf and bound->pwf_tight.
 * Since bernstein expansion requires bounded domains, we apply
 * range propagation on unbounded domains.  Otherwise, we respect the choice
 * of the user.
 *
 * If the polynomial does not depend on the set variables
 * then the bound is equal to the polynomial and
 * it can be added to "bound" directly.
 */
static isl_stat compressed_guarded_poly_bound(__isl_take isl_basic_set *bset,
	__isl_take isl_qpolynomial *poly, void *user)
{
	struct isl_bound *bound = (struct isl_bound *)user;
	isl_ctx *ctx;
	int bounded;
	int degree;
	if (!bset || !poly)
		goto error;
	degree = isl_qpolynomial_degree(poly);
	if (degree < -1)
		goto error;
	if (degree <= 0)
		return add_constant_poly(bset, poly, bound);
	ctx = isl_basic_set_get_ctx(bset);
	if (ctx->opt->bound == ISL_BOUND_RANGE)
		return isl_qpolynomial_bound_on_domain_range(bset, poly, bound);
	bounded = isl_basic_set_is_bounded(bset);
	if (bounded < 0)
		goto error;
	if (bounded)
		return isl_qpolynomial_bound_on_domain_bernstein(bset, poly, bound);
	else
		return isl_qpolynomial_bound_on_domain_range(bset, poly, bound);
error:
	isl_basic_set_free(bset);
	isl_qpolynomial_free(poly);
	return isl_stat_error;
}
static isl_stat unwrapped_guarded_poly_bound(__isl_take isl_basic_set *bset,
	__isl_take isl_qpolynomial *poly, void *user)
{
	struct isl_bound *bound = (struct isl_bound *)user;
	isl_pw_qpolynomial_fold *top_pwf;
	isl_pw_qpolynomial_fold *top_pwf_tight;
	isl_space *space;
	isl_morph *morph;
	isl_stat r;
	bset = isl_basic_set_detect_equalities(bset);
	if (!bset)
		goto error;
	if (bset->n_eq == 0)
		return compressed_guarded_poly_bound(bset, poly, user);
	morph = isl_basic_set_full_compression(bset);
	bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
	poly = isl_qpolynomial_morph_domain(poly, isl_morph_copy(morph));
	space = isl_morph_get_ran_space(morph);
	space = isl_space_params(space);
	top_pwf = bound->pwf;
	top_pwf_tight = bound->pwf_tight;
	space = isl_space_from_domain(space);
	space = isl_space_add_dims(space, isl_dim_out, 1);
	bound->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(space),
						  bound->type);
	bound->pwf_tight = isl_pw_qpolynomial_fold_zero(space, bound->type);
	r = compressed_guarded_poly_bound(bset, poly, user);
	morph = isl_morph_dom_params(morph);
	morph = isl_morph_ran_params(morph);
	morph = isl_morph_inverse(morph);
	bound->pwf = isl_pw_qpolynomial_fold_morph_domain(bound->pwf,
							isl_morph_copy(morph));
	bound->pwf_tight = isl_pw_qpolynomial_fold_morph_domain(
						bound->pwf_tight, morph);
	isl_bound_add(bound, top_pwf);
	isl_bound_add_tight(bound, top_pwf_tight);
	return r;
error:
	isl_basic_set_free(bset);
	isl_qpolynomial_free(poly);
	return isl_stat_error;
}
/* Update bound->pwf and bound->pwf_tight with a bound
 * of type bound->type on the polynomial "poly" over the domain "bset".
 *
 * If the original problem had a wrapped relation in the domain,
 * meaning that the bound should be computed over the range
 * of this relation, then temporarily treat the domain dimensions
 * of this wrapped relation as parameters, compute a bound
 * in terms of these and the original parameters,
 * turn the parameters back into set dimensions and
 * add the results to bound->pwf and bound->pwf_tight.
 *
 * Note that even though "bset" is known to live in the same space
 * as the domain of "poly", the names of the set dimensions
 * may be different (or missing).  Make sure the naming is exactly
 * the same before turning these dimensions into parameters
 * to ensure that the spaces are still the same after
 * this operation.
 */
static isl_stat guarded_poly_bound(__isl_take isl_basic_set *bset,
	__isl_take isl_qpolynomial *poly, void *user)
{
	struct isl_bound *bound = (struct isl_bound *)user;
	isl_space *space;
	isl_pw_qpolynomial_fold *top_pwf;
	isl_pw_qpolynomial_fold *top_pwf_tight;
	isl_size nparam;
	isl_size n_in;
	isl_stat r;
	if (!bound->wrapping)
		return unwrapped_guarded_poly_bound(bset, poly, user);
	nparam = isl_space_dim(bound->dim, isl_dim_param);
	n_in = isl_space_dim(bound->dim, isl_dim_in);
	if (nparam < 0 || n_in < 0)
		goto error;
	space = isl_qpolynomial_get_domain_space(poly);
	bset = isl_basic_set_reset_space(bset, space);
	bset = isl_basic_set_move_dims(bset, isl_dim_param, nparam,
					isl_dim_set, 0, n_in);
	poly = isl_qpolynomial_move_dims(poly, isl_dim_param, nparam,
					isl_dim_in, 0, n_in);
	space = isl_basic_set_get_space(bset);
	space = isl_space_params(space);
	top_pwf = bound->pwf;
	top_pwf_tight = bound->pwf_tight;
	space = isl_space_from_domain(space);
	space = isl_space_add_dims(space, isl_dim_out, 1);
	bound->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(space),
						  bound->type);
	bound->pwf_tight = isl_pw_qpolynomial_fold_zero(space, bound->type);
	r = unwrapped_guarded_poly_bound(bset, poly, user);
	bound->pwf = isl_pw_qpolynomial_fold_reset_space(bound->pwf,
						    isl_space_copy(bound->dim));
	bound->pwf_tight = isl_pw_qpolynomial_fold_reset_space(bound->pwf_tight,
						    isl_space_copy(bound->dim));
	isl_bound_add(bound, top_pwf);
	isl_bound_add_tight(bound, top_pwf_tight);
	return r;
error:
	isl_basic_set_free(bset);
	isl_qpolynomial_free(poly);
	return isl_stat_error;
}
static isl_stat guarded_qp(__isl_take isl_qpolynomial *qp, void *user)
{
	struct isl_bound *bound = (struct isl_bound *)user;
	isl_stat r;
	r = isl_qpolynomial_as_polynomial_on_domain(qp, bound->bset,
						    &guarded_poly_bound, user);
	isl_qpolynomial_free(qp);
	return r;
}
static isl_stat basic_guarded_fold(__isl_take isl_basic_set *bset, void *user)
{
	struct isl_bound *bound = (struct isl_bound *)user;
	isl_stat r;
	bound->bset = bset;
	r = isl_qpolynomial_fold_foreach_qpolynomial(bound->fold,
							&guarded_qp, user);
	isl_basic_set_free(bset);
	return r;
}
static isl_stat guarded_fold(__isl_take isl_set *set,
	__isl_take isl_qpolynomial_fold *fold, void *user)
{
	struct isl_bound *bound = (struct isl_bound *)user;
	if (!set || !fold)
		goto error;
	set = isl_set_make_disjoint(set);
	bound->fold = fold;
	bound->type = isl_qpolynomial_fold_get_type(fold);
	if (isl_set_foreach_basic_set(set, &basic_guarded_fold, bound) < 0)
		goto error;
	isl_set_free(set);
	isl_qpolynomial_fold_free(fold);
	return isl_stat_ok;
error:
	isl_set_free(set);
	isl_qpolynomial_fold_free(fold);
	return isl_stat_error;
}
__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_bound(
	__isl_take isl_pw_qpolynomial_fold *pwf, isl_bool *tight)
{
	isl_size nvar;
	struct isl_bound bound;
	isl_bool covers;
	if (!pwf)
		return NULL;
	bound.dim = isl_pw_qpolynomial_fold_get_domain_space(pwf);
	bound.wrapping = isl_space_is_wrapping(bound.dim);
	if (bound.wrapping)
		bound.dim = isl_space_unwrap(bound.dim);
	nvar = isl_space_dim(bound.dim, isl_dim_out);
	if (nvar < 0)
		bound.dim = isl_space_free(bound.dim);
	bound.dim = isl_space_domain(bound.dim);
	bound.dim = isl_space_from_domain(bound.dim);
	bound.dim = isl_space_add_dims(bound.dim, isl_dim_out, 1);
	if (nvar == 0) {
		if (tight)
			*tight = isl_bool_true;
		return isl_pw_qpolynomial_fold_reset_space(pwf, bound.dim);
	}
	if (isl_pw_qpolynomial_fold_is_zero(pwf)) {
		enum isl_fold type = pwf->type;
		isl_pw_qpolynomial_fold_free(pwf);
		if (tight)
			*tight = isl_bool_true;
		return isl_pw_qpolynomial_fold_zero(bound.dim, type);
	}
	bound.pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(bound.dim),
							pwf->type);
	bound.pwf_tight = isl_pw_qpolynomial_fold_zero(isl_space_copy(bound.dim),
							pwf->type);
	bound.check_tight = !!tight;
	if (isl_pw_qpolynomial_fold_foreach_lifted_piece(pwf,
							guarded_fold, &bound) < 0)
		goto error;
	covers = isl_pw_qpolynomial_fold_covers(bound.pwf_tight, bound.pwf);
	if (covers < 0)
		goto error;
	if (tight)
		*tight = covers;
	isl_space_free(bound.dim);
	isl_pw_qpolynomial_fold_free(pwf);
	if (covers) {
		isl_pw_qpolynomial_fold_free(bound.pwf);
		return bound.pwf_tight;
	}
	bound.pwf = isl_pw_qpolynomial_fold_fold(bound.pwf, bound.pwf_tight);
	return bound.pwf;
error:
	isl_pw_qpolynomial_fold_free(bound.pwf_tight);
	isl_pw_qpolynomial_fold_free(bound.pwf);
	isl_pw_qpolynomial_fold_free(pwf);
	isl_space_free(bound.dim);
	return NULL;
}
__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(
	__isl_take isl_pw_qpolynomial *pwqp, enum isl_fold type,
	isl_bool *tight)
{
	isl_pw_qpolynomial_fold *pwf;
	pwf = isl_pw_qpolynomial_fold_from_pw_qpolynomial(type, pwqp);
	return isl_pw_qpolynomial_fold_bound(pwf, tight);
}
struct isl_union_bound_data {
	enum isl_fold type;
	isl_bool tight;
	isl_union_pw_qpolynomial_fold *res;
};
static isl_stat bound_pw(__isl_take isl_pw_qpolynomial *pwqp, void *user)
{
	struct isl_union_bound_data *data = user;
	isl_pw_qpolynomial_fold *pwf;
	pwf = isl_pw_qpolynomial_bound(pwqp, data->type,
					data->tight ? &data->tight : NULL);
	data->res = isl_union_pw_qpolynomial_fold_fold_pw_qpolynomial_fold(
								data->res, pwf);
	return isl_stat_ok;
}
__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(
	__isl_take isl_union_pw_qpolynomial *upwqp,
	enum isl_fold type, isl_bool *tight)
{
	isl_space *space;
	struct isl_union_bound_data data = { type, 1, NULL };
	if (!upwqp)
		return NULL;
	if (!tight)
		data.tight = isl_bool_false;
	space = isl_union_pw_qpolynomial_get_space(upwqp);
	data.res = isl_union_pw_qpolynomial_fold_zero(space, type);
	if (isl_union_pw_qpolynomial_foreach_pw_qpolynomial(upwqp,
						    &bound_pw, &data) < 0)
		goto error;
	isl_union_pw_qpolynomial_free(upwqp);
	if (tight)
		*tight = data.tight;
	return data.res;
error:
	isl_union_pw_qpolynomial_free(upwqp);
	isl_union_pw_qpolynomial_fold_free(data.res);
	return NULL;
}
 |