| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 
 | /*
 * Copyright 2008-2009 Katholieke Universiteit Leuven
 *
 * Use of this software is governed by the MIT license
 *
 * Written by Sven Verdoolaege, K.U.Leuven, Departement
 * Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
 */
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include "isl_basis_reduction.h"
#include "isl_scan.h"
#include <isl_seq.h>
#include "isl_tab.h"
#include <isl_val_private.h>
#include <isl_vec_private.h>
struct isl_counter {
	struct isl_scan_callback callback;
	isl_int count;
	isl_int max;
};
static isl_stat increment_counter(struct isl_scan_callback *cb,
	__isl_take isl_vec *sample)
{
	struct isl_counter *cnt = (struct isl_counter *)cb;
	isl_int_add_ui(cnt->count, cnt->count, 1);
	isl_vec_free(sample);
	if (isl_int_is_zero(cnt->max) || isl_int_lt(cnt->count, cnt->max))
		return isl_stat_ok;
	return isl_stat_error;
}
static int increment_range(struct isl_scan_callback *cb, isl_int min, isl_int max)
{
	struct isl_counter *cnt = (struct isl_counter *)cb;
	isl_int_add(cnt->count, cnt->count, max);
	isl_int_sub(cnt->count, cnt->count, min);
	isl_int_add_ui(cnt->count, cnt->count, 1);
	if (isl_int_is_zero(cnt->max) || isl_int_lt(cnt->count, cnt->max))
		return 0;
	isl_int_set(cnt->count, cnt->max);
	return -1;
}
/* Call callback->add with the current sample value of the tableau "tab".
 */
static int add_solution(struct isl_tab *tab, struct isl_scan_callback *callback)
{
	struct isl_vec *sample;
	if (!tab)
		return -1;
	sample = isl_tab_get_sample_value(tab);
	if (!sample)
		return -1;
	return callback->add(callback, sample);
}
static isl_stat scan_0D(__isl_take isl_basic_set *bset,
	struct isl_scan_callback *callback)
{
	struct isl_vec *sample;
	sample = isl_vec_alloc(bset->ctx, 1);
	isl_basic_set_free(bset);
	if (!sample)
		return isl_stat_error;
	isl_int_set_si(sample->el[0], 1);
	return callback->add(callback, sample);
}
/* Look for all integer points in "bset", which is assumed to be bounded,
 * and call callback->add on each of them.
 *
 * We first compute a reduced basis for the set and then scan
 * the set in the directions of this basis.
 * We basically perform a depth first search, where in each level i
 * we compute the range in the i-th basis vector direction, given
 * fixed values in the directions of the previous basis vector.
 * We then add an equality to the tableau fixing the value in the
 * direction of the current basis vector to each value in the range
 * in turn and then continue to the next level.
 *
 * The search is implemented iteratively.  "level" identifies the current
 * basis vector.  "init" is true if we want the first value at the current
 * level and false if we want the next value.
 * Solutions are added in the leaves of the search tree, i.e., after
 * we have fixed a value in each direction of the basis.
 */
isl_stat isl_basic_set_scan(__isl_take isl_basic_set *bset,
	struct isl_scan_callback *callback)
{
	isl_size dim;
	struct isl_mat *B = NULL;
	struct isl_tab *tab = NULL;
	struct isl_vec *min;
	struct isl_vec *max;
	struct isl_tab_undo **snap;
	int level;
	int init;
	enum isl_lp_result res;
	dim = isl_basic_set_dim(bset, isl_dim_all);
	if (dim < 0) {
		bset = isl_basic_set_free(bset);
		return isl_stat_error;
	}
	if (dim == 0)
		return scan_0D(bset, callback);
	min = isl_vec_alloc(bset->ctx, dim);
	max = isl_vec_alloc(bset->ctx, dim);
	snap = isl_alloc_array(bset->ctx, struct isl_tab_undo *, dim);
	if (!min || !max || !snap)
		goto error;
	tab = isl_tab_from_basic_set(bset, 0);
	if (!tab)
		goto error;
	if (isl_tab_extend_cons(tab, dim + 1) < 0)
		goto error;
	tab->basis = isl_mat_identity(bset->ctx, 1 + dim);
	if (1)
		tab = isl_tab_compute_reduced_basis(tab);
	if (!tab)
		goto error;
	B = isl_mat_copy(tab->basis);
	if (!B)
		goto error;
	level = 0;
	init = 1;
	while (level >= 0) {
		int empty = 0;
		if (init) {
			res = isl_tab_min(tab, B->row[1 + level],
				    bset->ctx->one, &min->el[level], NULL, 0);
			if (res == isl_lp_empty)
				empty = 1;
			if (res == isl_lp_error || res == isl_lp_unbounded)
				goto error;
			isl_seq_neg(B->row[1 + level] + 1,
				    B->row[1 + level] + 1, dim);
			res = isl_tab_min(tab, B->row[1 + level],
				    bset->ctx->one, &max->el[level], NULL, 0);
			isl_seq_neg(B->row[1 + level] + 1,
				    B->row[1 + level] + 1, dim);
			isl_int_neg(max->el[level], max->el[level]);
			if (res == isl_lp_empty)
				empty = 1;
			if (res == isl_lp_error || res == isl_lp_unbounded)
				goto error;
			snap[level] = isl_tab_snap(tab);
		} else
			isl_int_add_ui(min->el[level], min->el[level], 1);
		if (empty || isl_int_gt(min->el[level], max->el[level])) {
			level--;
			init = 0;
			if (level >= 0)
				if (isl_tab_rollback(tab, snap[level]) < 0)
					goto error;
			continue;
		}
		if (level == dim - 1 && callback->add == increment_counter) {
			if (increment_range(callback,
					    min->el[level], max->el[level]))
				goto error;
			level--;
			init = 0;
			if (level >= 0)
				if (isl_tab_rollback(tab, snap[level]) < 0)
					goto error;
			continue;
		}
		isl_int_neg(B->row[1 + level][0], min->el[level]);
		if (isl_tab_add_valid_eq(tab, B->row[1 + level]) < 0)
			goto error;
		isl_int_set_si(B->row[1 + level][0], 0);
		if (level < dim - 1) {
			++level;
			init = 1;
			continue;
		}
		if (add_solution(tab, callback) < 0)
			goto error;
		init = 0;
		if (isl_tab_rollback(tab, snap[level]) < 0)
			goto error;
	}
	isl_tab_free(tab);
	free(snap);
	isl_vec_free(min);
	isl_vec_free(max);
	isl_basic_set_free(bset);
	isl_mat_free(B);
	return isl_stat_ok;
error:
	isl_tab_free(tab);
	free(snap);
	isl_vec_free(min);
	isl_vec_free(max);
	isl_basic_set_free(bset);
	isl_mat_free(B);
	return isl_stat_error;
}
isl_stat isl_set_scan(__isl_take isl_set *set,
	struct isl_scan_callback *callback)
{
	int i;
	if (!set || !callback)
		goto error;
	set = isl_set_cow(set);
	set = isl_set_make_disjoint(set);
	set = isl_set_compute_divs(set);
	if (!set)
		goto error;
	for (i = 0; i < set->n; ++i)
		if (isl_basic_set_scan(isl_basic_set_copy(set->p[i]),
					callback) < 0)
			goto error;
	isl_set_free(set);
	return isl_stat_ok;
error:
	isl_set_free(set);
	return isl_stat_error;
}
int isl_basic_set_count_upto(__isl_keep isl_basic_set *bset,
	isl_int max, isl_int *count)
{
	struct isl_counter cnt = { { &increment_counter } };
	if (!bset)
		return -1;
	isl_int_init(cnt.count);
	isl_int_init(cnt.max);
	isl_int_set_si(cnt.count, 0);
	isl_int_set(cnt.max, max);
	if (isl_basic_set_scan(isl_basic_set_copy(bset), &cnt.callback) < 0 &&
	    isl_int_lt(cnt.count, cnt.max))
		goto error;
	isl_int_set(*count, cnt.count);
	isl_int_clear(cnt.max);
	isl_int_clear(cnt.count);
	return 0;
error:
	isl_int_clear(cnt.count);
	return -1;
}
int isl_set_count_upto(__isl_keep isl_set *set, isl_int max, isl_int *count)
{
	struct isl_counter cnt = { { &increment_counter } };
	if (!set)
		return -1;
	isl_int_init(cnt.count);
	isl_int_init(cnt.max);
	isl_int_set_si(cnt.count, 0);
	isl_int_set(cnt.max, max);
	if (isl_set_scan(isl_set_copy(set), &cnt.callback) < 0 &&
	    isl_int_lt(cnt.count, cnt.max))
		goto error;
	isl_int_set(*count, cnt.count);
	isl_int_clear(cnt.max);
	isl_int_clear(cnt.count);
	return 0;
error:
	isl_int_clear(cnt.count);
	return -1;
}
int isl_set_count(__isl_keep isl_set *set, isl_int *count)
{
	if (!set)
		return -1;
	return isl_set_count_upto(set, set->ctx->zero, count);
}
/* Count the total number of elements in "set" (in an inefficient way) and
 * return the result.
 */
__isl_give isl_val *isl_set_count_val(__isl_keep isl_set *set)
{
	isl_val *v;
	if (!set)
		return NULL;
	v = isl_val_zero(isl_set_get_ctx(set));
	v = isl_val_cow(v);
	if (!v)
		return NULL;
	if (isl_set_count(set, &v->n) < 0)
		v = isl_val_free(v);
	return v;
}
 |