1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
//===--- BranchCloneCheck.cpp - clang-tidy --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "BranchCloneCheck.h"
#include "../utils/ASTUtils.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Analysis/CloneDetection.h"
#include "clang/Lex/Lexer.h"
#include "llvm/Support/Casting.h"
using namespace clang;
using namespace clang::ast_matchers;
namespace {
/// A branch in a switch may consist of several statements; while a branch in
/// an if/else if/else chain is one statement (which may be a CompoundStmt).
using SwitchBranch = llvm::SmallVector<const Stmt *, 2>;
} // anonymous namespace
/// Determines if the bodies of two branches in a switch statements are Type I
/// clones of each other. This function only examines the body of the branch
/// and ignores the `case X:` or `default:` at the start of the branch.
static bool areSwitchBranchesIdentical(const SwitchBranch &LHS,
const SwitchBranch &RHS,
const ASTContext &Context) {
if (LHS.size() != RHS.size())
return false;
for (size_t I = 0, Size = LHS.size(); I < Size; I++) {
// NOTE: We strip goto labels and annotations in addition to stripping
// the `case X:` or `default:` labels, but it is very unlikely that this
// would cause false positives in real-world code.
if (!tidy::utils::areStatementsIdentical(LHS[I]->stripLabelLikeStatements(),
RHS[I]->stripLabelLikeStatements(),
Context)) {
return false;
}
}
return true;
}
static bool isFallthroughSwitchBranch(const SwitchBranch &Branch) {
struct SwitchCaseVisitor : RecursiveASTVisitor<SwitchCaseVisitor> {
using RecursiveASTVisitor<SwitchCaseVisitor>::DataRecursionQueue;
bool TraverseLambdaExpr(LambdaExpr *, DataRecursionQueue * = nullptr) {
return true; // Ignore lambdas
}
bool TraverseDecl(Decl *) {
return true; // No need to check declarations
}
bool TraverseSwitchStmt(SwitchStmt *, DataRecursionQueue * = nullptr) {
return true; // Ignore sub-switches
}
bool TraverseSwitchCase(SwitchCase *, DataRecursionQueue * = nullptr) {
return true; // Ignore cases
}
bool TraverseDefaultStmt(DefaultStmt *, DataRecursionQueue * = nullptr) {
return true; // Ignore defaults
}
bool TraverseAttributedStmt(AttributedStmt *S) {
if (!S)
return true;
for (const Attr *A : S->getAttrs()) {
if (isa<FallThroughAttr>(A))
return false;
}
return true;
}
} Visitor;
for (const Stmt *Elem : Branch) {
if (!Visitor.TraverseStmt(const_cast<Stmt *>(Elem)))
return true;
}
return false;
}
namespace clang::tidy::bugprone {
void BranchCloneCheck::registerMatchers(MatchFinder *Finder) {
Finder->addMatcher(
ifStmt(unless(allOf(isConstexpr(), isInTemplateInstantiation())),
stmt().bind("if"),
hasParent(stmt(unless(ifStmt(hasElse(equalsBoundNode("if")))))),
hasElse(stmt().bind("else"))),
this);
Finder->addMatcher(switchStmt().bind("switch"), this);
Finder->addMatcher(conditionalOperator().bind("condOp"), this);
}
void BranchCloneCheck::check(const MatchFinder::MatchResult &Result) {
const ASTContext &Context = *Result.Context;
if (const auto *IS = Result.Nodes.getNodeAs<IfStmt>("if")) {
const Stmt *Then = IS->getThen();
assert(Then && "An IfStmt must have a `then` branch!");
const Stmt *Else = Result.Nodes.getNodeAs<Stmt>("else");
assert(Else && "We only look for `if` statements with an `else` branch!");
if (!isa<IfStmt>(Else)) {
// Just a simple if with no `else if` branch.
if (utils::areStatementsIdentical(Then->IgnoreContainers(),
Else->IgnoreContainers(), Context)) {
diag(IS->getBeginLoc(), "if with identical then and else branches");
diag(IS->getElseLoc(), "else branch starts here", DiagnosticIDs::Note);
}
return;
}
// This is the complicated case when we start an if/else if/else chain.
// To find all the duplicates, we collect all the branches into a vector.
llvm::SmallVector<const Stmt *, 4> Branches;
const IfStmt *Cur = IS;
while (true) {
// Store the `then` branch.
Branches.push_back(Cur->getThen());
Else = Cur->getElse();
// The chain ends if there is no `else` branch.
if (!Else)
break;
// Check if there is another `else if`...
Cur = dyn_cast<IfStmt>(Else);
if (!Cur) {
// ...this is just a plain `else` branch at the end of the chain.
Branches.push_back(Else);
break;
}
}
size_t N = Branches.size();
llvm::BitVector KnownAsClone(N);
for (size_t I = 0; I + 1 < N; I++) {
// We have already seen Branches[i] as a clone of an earlier branch.
if (KnownAsClone[I])
continue;
int NumCopies = 1;
for (size_t J = I + 1; J < N; J++) {
if (KnownAsClone[J] || !utils::areStatementsIdentical(
Branches[I]->IgnoreContainers(),
Branches[J]->IgnoreContainers(), Context))
continue;
NumCopies++;
KnownAsClone[J] = true;
if (NumCopies == 2) {
// We report the first occurrence only when we find the second one.
diag(Branches[I]->getBeginLoc(),
"repeated branch body in conditional chain");
SourceLocation End =
Lexer::getLocForEndOfToken(Branches[I]->getEndLoc(), 0,
*Result.SourceManager, getLangOpts());
if (End.isValid()) {
diag(End, "end of the original", DiagnosticIDs::Note);
}
}
diag(Branches[J]->getBeginLoc(), "clone %0 starts here",
DiagnosticIDs::Note)
<< (NumCopies - 1);
}
}
return;
}
if (const auto *CO = Result.Nodes.getNodeAs<ConditionalOperator>("condOp")) {
// We do not try to detect chains of ?: operators.
if (utils::areStatementsIdentical(CO->getTrueExpr(), CO->getFalseExpr(),
Context))
diag(CO->getQuestionLoc(),
"conditional operator with identical true and false expressions");
return;
}
if (const auto *SS = Result.Nodes.getNodeAs<SwitchStmt>("switch")) {
const CompoundStmt *Body = dyn_cast_or_null<CompoundStmt>(SS->getBody());
// Code like
// switch (x) case 0: case 1: foobar();
// is legal and calls foobar() if and only if x is either 0 or 1;
// but we do not try to distinguish branches in such code.
if (!Body)
return;
// We will first collect the branches of the switch statements. For the
// sake of simplicity we say that branches are delimited by the SwitchCase
// (`case:` or `default:`) children of Body; that is, we ignore `case:` or
// `default:` labels embedded inside other statements and we do not follow
// the effects of `break` and other manipulation of the control-flow.
llvm::SmallVector<SwitchBranch, 4> Branches;
for (const Stmt *S : Body->body()) {
// If this is a `case` or `default`, we start a new, empty branch.
if (isa<SwitchCase>(S))
Branches.emplace_back();
// There may be code before the first branch (which can be dead code
// and can be code reached either through goto or through case labels
// that are embedded inside e.g. inner compound statements); we do not
// store those statements in branches.
if (!Branches.empty())
Branches.back().push_back(S);
}
auto *End = Branches.end();
auto *BeginCurrent = Branches.begin();
while (BeginCurrent < End) {
if (isFallthroughSwitchBranch(*BeginCurrent)) {
++BeginCurrent;
continue;
}
auto *EndCurrent = BeginCurrent + 1;
while (EndCurrent < End &&
areSwitchBranchesIdentical(*BeginCurrent, *EndCurrent, Context)) {
++EndCurrent;
}
// At this point the iterator range {BeginCurrent, EndCurrent} contains a
// complete family of consecutive identical branches.
if (EndCurrent == (BeginCurrent + 1)) {
// No consecutive identical branches that start on BeginCurrent
BeginCurrent = EndCurrent;
continue;
}
diag(BeginCurrent->front()->getBeginLoc(),
"switch has %0 consecutive identical branches")
<< static_cast<int>(std::distance(BeginCurrent, EndCurrent));
SourceLocation EndLoc = (EndCurrent - 1)->back()->getEndLoc();
// If the case statement is generated from a macro, it's SourceLocation
// may be invalid, resulting in an assertion failure down the line.
// While not optimal, try the begin location in this case, it's still
// better then nothing.
if (EndLoc.isInvalid())
EndLoc = (EndCurrent - 1)->back()->getBeginLoc();
if (EndLoc.isMacroID())
EndLoc = Context.getSourceManager().getExpansionLoc(EndLoc);
EndLoc = Lexer::getLocForEndOfToken(EndLoc, 0, *Result.SourceManager,
getLangOpts());
if (EndLoc.isValid()) {
diag(EndLoc, "last of these clones ends here", DiagnosticIDs::Note);
}
BeginCurrent = EndCurrent;
}
return;
}
llvm_unreachable("No if statement and no switch statement.");
}
} // namespace clang::tidy::bugprone
|