1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
|
//===--- EasilySwappableParametersCheck.cpp - clang-tidy ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "EasilySwappableParametersCheck.h"
#include "../utils/OptionsUtils.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/SmallSet.h"
#define DEBUG_TYPE "EasilySwappableParametersCheck"
#include "llvm/Support/Debug.h"
#include <optional>
namespace optutils = clang::tidy::utils::options;
/// The default value for the MinimumLength check option.
static constexpr std::size_t DefaultMinimumLength = 2;
/// The default value for ignored parameter names.
static constexpr llvm::StringLiteral DefaultIgnoredParameterNames = "\"\";"
"iterator;"
"Iterator;"
"begin;"
"Begin;"
"end;"
"End;"
"first;"
"First;"
"last;"
"Last;"
"lhs;"
"LHS;"
"rhs;"
"RHS";
/// The default value for ignored parameter type suffixes.
static constexpr llvm::StringLiteral DefaultIgnoredParameterTypeSuffixes =
"bool;"
"Bool;"
"_Bool;"
"it;"
"It;"
"iterator;"
"Iterator;"
"inputit;"
"InputIt;"
"forwardit;"
"ForwardIt;"
"bidirit;"
"BidirIt;"
"constiterator;"
"const_iterator;"
"Const_Iterator;"
"Constiterator;"
"ConstIterator;"
"RandomIt;"
"randomit;"
"random_iterator;"
"ReverseIt;"
"reverse_iterator;"
"reverse_const_iterator;"
"ConstReverseIterator;"
"Const_Reverse_Iterator;"
"const_reverse_iterator;"
"Constreverseiterator;"
"constreverseiterator";
/// The default value for the QualifiersMix check option.
static constexpr bool DefaultQualifiersMix = false;
/// The default value for the ModelImplicitConversions check option.
static constexpr bool DefaultModelImplicitConversions = true;
/// The default value for suppressing diagnostics about parameters that are
/// used together.
static constexpr bool DefaultSuppressParametersUsedTogether = true;
/// The default value for the NamePrefixSuffixSilenceDissimilarityTreshold
/// check option.
static constexpr std::size_t
DefaultNamePrefixSuffixSilenceDissimilarityTreshold = 1;
using namespace clang::ast_matchers;
namespace clang::tidy::bugprone {
using TheCheck = EasilySwappableParametersCheck;
namespace filter {
class SimilarlyUsedParameterPairSuppressor;
static bool isIgnoredParameter(const TheCheck &Check, const ParmVarDecl *Node);
static inline bool
isSimilarlyUsedParameter(const SimilarlyUsedParameterPairSuppressor &Suppressor,
const ParmVarDecl *Param1, const ParmVarDecl *Param2);
static bool prefixSuffixCoverUnderThreshold(std::size_t Threshold,
StringRef Str1, StringRef Str2);
} // namespace filter
namespace model {
/// The language features involved in allowing the mix between two parameters.
enum class MixFlags : unsigned char {
Invalid = 0, ///< Sentinel bit pattern. DO NOT USE!
/// Certain constructs (such as pointers to noexcept/non-noexcept functions)
/// have the same CanonicalType, which would result in false positives.
/// During the recursive modelling call, this flag is set if a later diagnosed
/// canonical type equivalence should be thrown away.
WorkaroundDisableCanonicalEquivalence = 1,
None = 2, ///< Mix between the two parameters is not possible.
Trivial = 4, ///< The two mix trivially, and are the exact same type.
Canonical = 8, ///< The two mix because the types refer to the same
/// CanonicalType, but we do not elaborate as to how.
TypeAlias = 16, ///< The path from one type to the other involves
/// desugaring type aliases.
ReferenceBind = 32, ///< The mix involves the binding power of "const &".
Qualifiers = 64, ///< The mix involves change in the qualifiers.
ImplicitConversion = 128, ///< The mixing of the parameters is possible
/// through implicit conversions between the types.
LLVM_MARK_AS_BITMASK_ENUM(/* LargestValue =*/ImplicitConversion)
};
LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
/// Returns whether the SearchedFlag is turned on in the Data.
static inline bool hasFlag(MixFlags Data, MixFlags SearchedFlag) {
assert(SearchedFlag != MixFlags::Invalid &&
"can't be used to detect lack of all bits!");
// "Data & SearchedFlag" would need static_cast<bool>() in conditions.
return (Data & SearchedFlag) == SearchedFlag;
}
#ifndef NDEBUG
// The modelling logic of this check is more complex than usual, and
// potentially hard to understand without the ability to see into the
// representation during the recursive descent. This debug code is only
// compiled in 'Debug' mode, or if LLVM_ENABLE_ASSERTIONS config is turned on.
/// Formats the MixFlags enum into a useful, user-readable representation.
static inline std::string formatMixFlags(MixFlags F) {
if (F == MixFlags::Invalid)
return "#Inv!";
SmallString<8> Str{"-------"};
if (hasFlag(F, MixFlags::None))
// Shows the None bit explicitly, as it can be applied in the recursion
// even if other bits are set.
Str[0] = '!';
if (hasFlag(F, MixFlags::Trivial))
Str[1] = 'T';
if (hasFlag(F, MixFlags::Canonical))
Str[2] = 'C';
if (hasFlag(F, MixFlags::TypeAlias))
Str[3] = 't';
if (hasFlag(F, MixFlags::ReferenceBind))
Str[4] = '&';
if (hasFlag(F, MixFlags::Qualifiers))
Str[5] = 'Q';
if (hasFlag(F, MixFlags::ImplicitConversion))
Str[6] = 'i';
if (hasFlag(F, MixFlags::WorkaroundDisableCanonicalEquivalence))
Str.append("(~C)");
return Str.str().str();
}
#endif // NDEBUG
/// The results of the steps of an Implicit Conversion Sequence is saved in
/// an instance of this record.
///
/// A ConversionSequence maps the steps of the conversion with a member for
/// each type involved in the conversion. Imagine going from a hypothetical
/// Complex class to projecting it to the real part as a const double.
///
/// I.e., given:
///
/// struct Complex {
/// operator double() const;
/// };
///
/// void functionBeingAnalysed(Complex C, const double R);
///
/// we will get the following sequence:
///
/// (Begin=) Complex
///
/// The first standard conversion is a qualification adjustment.
/// (AfterFirstStandard=) const Complex
///
/// Then the user-defined conversion is executed.
/// (UDConvOp.ConversionOperatorResultType=) double
///
/// Then this 'double' is qualifier-adjusted to 'const double'.
/// (AfterSecondStandard=) double
///
/// The conversion's result has now been calculated, so it ends here.
/// (End=) double.
///
/// Explicit storing of Begin and End in this record is needed, because
/// getting to what Begin and End here are needs further resolution of types,
/// e.g. in the case of typedefs:
///
/// using Comp = Complex;
/// using CD = const double;
/// void functionBeingAnalysed2(Comp C, CD R);
///
/// In this case, the user will be diagnosed with a potential conversion
/// between the two typedefs as written in the code, but to elaborate the
/// reasoning behind this conversion, we also need to show what the typedefs
/// mean. See FormattedConversionSequence towards the bottom of this file!
struct ConversionSequence {
enum UserDefinedConversionKind { UDCK_None, UDCK_Ctor, UDCK_Oper };
struct UserDefinedConvertingConstructor {
const CXXConstructorDecl *Fun;
QualType ConstructorParameterType;
QualType UserDefinedType;
};
struct UserDefinedConversionOperator {
const CXXConversionDecl *Fun;
QualType UserDefinedType;
QualType ConversionOperatorResultType;
};
/// The type the conversion stared from.
QualType Begin;
/// The intermediate type after the first Standard Conversion Sequence.
QualType AfterFirstStandard;
/// The details of the user-defined conversion involved, as a tagged union.
union {
char None;
UserDefinedConvertingConstructor UDConvCtor;
UserDefinedConversionOperator UDConvOp;
};
UserDefinedConversionKind UDConvKind;
/// The intermediate type after performing the second Standard Conversion
/// Sequence.
QualType AfterSecondStandard;
/// The result type the conversion targeted.
QualType End;
ConversionSequence() : None(0), UDConvKind(UDCK_None) {}
ConversionSequence(QualType From, QualType To)
: Begin(From), None(0), UDConvKind(UDCK_None), End(To) {}
explicit operator bool() const {
return !AfterFirstStandard.isNull() || UDConvKind != UDCK_None ||
!AfterSecondStandard.isNull();
}
/// Returns all the "steps" (non-unique and non-similar) types involved in
/// the conversion sequence. This method does **NOT** return Begin and End.
SmallVector<QualType, 4> getInvolvedTypesInSequence() const {
SmallVector<QualType, 4> Ret;
auto EmplaceIfDifferent = [&Ret](QualType QT) {
if (QT.isNull())
return;
if (Ret.empty())
Ret.emplace_back(QT);
else if (Ret.back() != QT)
Ret.emplace_back(QT);
};
EmplaceIfDifferent(AfterFirstStandard);
switch (UDConvKind) {
case UDCK_Ctor:
EmplaceIfDifferent(UDConvCtor.ConstructorParameterType);
EmplaceIfDifferent(UDConvCtor.UserDefinedType);
break;
case UDCK_Oper:
EmplaceIfDifferent(UDConvOp.UserDefinedType);
EmplaceIfDifferent(UDConvOp.ConversionOperatorResultType);
break;
case UDCK_None:
break;
}
EmplaceIfDifferent(AfterSecondStandard);
return Ret;
}
/// Updates the steps of the conversion sequence with the steps from the
/// other instance.
///
/// \note This method does not check if the resulting conversion sequence is
/// sensible!
ConversionSequence &update(const ConversionSequence &RHS) {
if (!RHS.AfterFirstStandard.isNull())
AfterFirstStandard = RHS.AfterFirstStandard;
switch (RHS.UDConvKind) {
case UDCK_Ctor:
UDConvKind = UDCK_Ctor;
UDConvCtor = RHS.UDConvCtor;
break;
case UDCK_Oper:
UDConvKind = UDCK_Oper;
UDConvOp = RHS.UDConvOp;
break;
case UDCK_None:
break;
}
if (!RHS.AfterSecondStandard.isNull())
AfterSecondStandard = RHS.AfterSecondStandard;
return *this;
}
/// Sets the user-defined conversion to the given constructor.
void setConversion(const UserDefinedConvertingConstructor &UDCC) {
UDConvKind = UDCK_Ctor;
UDConvCtor = UDCC;
}
/// Sets the user-defined conversion to the given operator.
void setConversion(const UserDefinedConversionOperator &UDCO) {
UDConvKind = UDCK_Oper;
UDConvOp = UDCO;
}
/// Returns the type in the conversion that's formally "in our hands" once
/// the user-defined conversion is executed.
QualType getTypeAfterUserDefinedConversion() const {
switch (UDConvKind) {
case UDCK_Ctor:
return UDConvCtor.UserDefinedType;
case UDCK_Oper:
return UDConvOp.ConversionOperatorResultType;
case UDCK_None:
return {};
}
llvm_unreachable("Invalid UDConv kind.");
}
const CXXMethodDecl *getUserDefinedConversionFunction() const {
switch (UDConvKind) {
case UDCK_Ctor:
return UDConvCtor.Fun;
case UDCK_Oper:
return UDConvOp.Fun;
case UDCK_None:
return {};
}
llvm_unreachable("Invalid UDConv kind.");
}
/// Returns the SourceRange in the text that corresponds to the interesting
/// part of the user-defined conversion. This is either the parameter type
/// in a converting constructor, or the conversion result type in a conversion
/// operator.
SourceRange getUserDefinedConversionHighlight() const {
switch (UDConvKind) {
case UDCK_Ctor:
return UDConvCtor.Fun->getParamDecl(0)->getSourceRange();
case UDCK_Oper:
// getReturnTypeSourceRange() does not work for CXXConversionDecls as the
// returned type is physically behind the declaration's name ("operator").
if (const FunctionTypeLoc FTL = UDConvOp.Fun->getFunctionTypeLoc())
if (const TypeLoc RetLoc = FTL.getReturnLoc())
return RetLoc.getSourceRange();
return {};
case UDCK_None:
return {};
}
llvm_unreachable("Invalid UDConv kind.");
}
};
/// Contains the metadata for the mixability result between two types,
/// independently of which parameters they were calculated from.
struct MixData {
/// The flag bits of the mix indicating what language features allow for it.
MixFlags Flags = MixFlags::Invalid;
/// A potentially calculated common underlying type after desugaring, that
/// both sides of the mix can originate from.
QualType CommonType;
/// The steps an implicit conversion performs to get from one type to the
/// other.
ConversionSequence Conversion, ConversionRTL;
/// True if the MixData was specifically created with only a one-way
/// conversion modelled.
bool CreatedFromOneWayConversion = false;
MixData(MixFlags Flags) : Flags(Flags) {}
MixData(MixFlags Flags, QualType CommonType)
: Flags(Flags), CommonType(CommonType) {}
MixData(MixFlags Flags, ConversionSequence Conv)
: Flags(Flags), Conversion(Conv), CreatedFromOneWayConversion(true) {}
MixData(MixFlags Flags, ConversionSequence LTR, ConversionSequence RTL)
: Flags(Flags), Conversion(LTR), ConversionRTL(RTL) {}
MixData(MixFlags Flags, QualType CommonType, ConversionSequence LTR,
ConversionSequence RTL)
: Flags(Flags), CommonType(CommonType), Conversion(LTR),
ConversionRTL(RTL) {}
void sanitize() {
assert(Flags != MixFlags::Invalid && "sanitize() called on invalid bitvec");
MixFlags CanonicalAndWorkaround =
MixFlags::Canonical | MixFlags::WorkaroundDisableCanonicalEquivalence;
if ((Flags & CanonicalAndWorkaround) == CanonicalAndWorkaround) {
// A workaround for too eagerly equivalent canonical types was requested,
// and a canonical equivalence was proven. Fulfill the request and throw
// this result away.
Flags = MixFlags::None;
return;
}
if (hasFlag(Flags, MixFlags::None)) {
// If anywhere down the recursion a potential mix "path" is deemed
// impossible, throw away all the other bits because the mix is not
// possible.
Flags = MixFlags::None;
return;
}
if (Flags == MixFlags::Trivial)
return;
if (static_cast<bool>(Flags ^ MixFlags::Trivial))
// If the mix involves somewhere trivial equivalence but down the
// recursion other bit(s) were set, remove the trivial bit, as it is not
// trivial.
Flags &= ~MixFlags::Trivial;
bool ShouldHaveImplicitConvFlag = false;
if (CreatedFromOneWayConversion && Conversion)
ShouldHaveImplicitConvFlag = true;
else if (!CreatedFromOneWayConversion && Conversion && ConversionRTL)
// Only say that we have implicit conversion mix possibility if it is
// bidirectional. Otherwise, the compiler would report an *actual* swap
// at a call site...
ShouldHaveImplicitConvFlag = true;
if (ShouldHaveImplicitConvFlag)
Flags |= MixFlags::ImplicitConversion;
else
Flags &= ~MixFlags::ImplicitConversion;
}
bool isValid() const { return Flags >= MixFlags::None; }
bool indicatesMixability() const { return Flags > MixFlags::None; }
/// Add the specified flag bits to the flags.
MixData operator|(MixFlags EnableFlags) const {
if (CreatedFromOneWayConversion) {
MixData M{Flags | EnableFlags, Conversion};
M.CommonType = CommonType;
return M;
}
return {Flags | EnableFlags, CommonType, Conversion, ConversionRTL};
}
/// Add the specified flag bits to the flags.
MixData &operator|=(MixFlags EnableFlags) {
Flags |= EnableFlags;
return *this;
}
template <class F> MixData withCommonTypeTransformed(F &&Func) const {
if (CommonType.isNull())
return *this;
QualType NewCommonType = Func(CommonType);
if (CreatedFromOneWayConversion) {
MixData M{Flags, Conversion};
M.CommonType = NewCommonType;
return M;
}
return {Flags, NewCommonType, Conversion, ConversionRTL};
}
};
/// A named tuple that contains the information for a mix between two concrete
/// parameters.
struct Mix {
const ParmVarDecl *First, *Second;
MixData Data;
Mix(const ParmVarDecl *F, const ParmVarDecl *S, MixData Data)
: First(F), Second(S), Data(std::move(Data)) {}
void sanitize() { Data.sanitize(); }
MixFlags flags() const { return Data.Flags; }
bool flagsValid() const { return Data.isValid(); }
bool mixable() const { return Data.indicatesMixability(); }
QualType commonUnderlyingType() const { return Data.CommonType; }
const ConversionSequence &leftToRightConversionSequence() const {
return Data.Conversion;
}
const ConversionSequence &rightToLeftConversionSequence() const {
return Data.ConversionRTL;
}
};
// NOLINTNEXTLINE(misc-redundant-expression): Seems to be a bogus warning.
static_assert(std::is_trivially_copyable<Mix>::value &&
std::is_trivially_move_constructible<Mix>::value &&
std::is_trivially_move_assignable<Mix>::value,
"Keep frequently used data simple!");
struct MixableParameterRange {
/// A container for Mixes.
using MixVector = SmallVector<Mix, 8>;
/// The number of parameters iterated to build the instance.
std::size_t NumParamsChecked = 0;
/// The individual flags and supporting information for the mixes.
MixVector Mixes;
/// Gets the leftmost parameter of the range.
const ParmVarDecl *getFirstParam() const {
// The first element is the LHS of the very first mix in the range.
assert(!Mixes.empty());
return Mixes.front().First;
}
/// Gets the rightmost parameter of the range.
const ParmVarDecl *getLastParam() const {
// The builder function breaks building an instance of this type if it
// finds something that can not be mixed with the rest, by going *forward*
// in the list of parameters. So at any moment of break, the RHS of the last
// element of the mix vector is also the last element of the mixing range.
assert(!Mixes.empty());
return Mixes.back().Second;
}
};
/// Helper enum for the recursive calls in the modelling that toggle what kinds
/// of implicit conversions are to be modelled.
enum class ImplicitConversionModellingMode : unsigned char {
///< No implicit conversions are modelled.
None,
///< The full implicit conversion sequence is modelled.
All,
///< Only model a unidirectional implicit conversion and within it only one
/// standard conversion sequence.
OneWaySingleStandardOnly
};
static MixData
isLRefEquallyBindingToType(const TheCheck &Check,
const LValueReferenceType *LRef, QualType Ty,
const ASTContext &Ctx, bool IsRefRHS,
ImplicitConversionModellingMode ImplicitMode);
static MixData
approximateImplicitConversion(const TheCheck &Check, QualType LType,
QualType RType, const ASTContext &Ctx,
ImplicitConversionModellingMode ImplicitMode);
static inline bool isUselessSugar(const Type *T) {
return isa<AttributedType, DecayedType, ElaboratedType, ParenType>(T);
}
namespace {
struct NonCVRQualifiersResult {
/// True if the types are qualified in a way that even after equating or
/// removing local CVR qualification, even if the unqualified types
/// themselves would mix, the qualified ones don't, because there are some
/// other local qualifiers that are not equal.
bool HasMixabilityBreakingQualifiers;
/// The set of equal qualifiers between the two types.
Qualifiers CommonQualifiers;
};
} // namespace
/// Returns if the two types are qualified in a way that ever after equating or
/// removing local CVR qualification, even if the unqualified types would mix,
/// the qualified ones don't, because there are some other local qualifiers
/// that aren't equal.
static NonCVRQualifiersResult
getNonCVRQualifiers(const ASTContext &Ctx, QualType LType, QualType RType) {
LLVM_DEBUG(llvm::dbgs() << ">>> getNonCVRQualifiers for LType:\n";
LType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n";
RType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';);
Qualifiers LQual = LType.getLocalQualifiers(),
RQual = RType.getLocalQualifiers();
// Strip potential CVR. That is handled by the check option QualifiersMix.
LQual.removeCVRQualifiers();
RQual.removeCVRQualifiers();
NonCVRQualifiersResult Ret;
Ret.CommonQualifiers = Qualifiers::removeCommonQualifiers(LQual, RQual);
LLVM_DEBUG(llvm::dbgs() << "--- hasNonCVRMixabilityBreakingQualifiers. "
"Removed common qualifiers: ";
Ret.CommonQualifiers.print(llvm::dbgs(), Ctx.getPrintingPolicy());
llvm::dbgs() << "\n\tremaining on LType: ";
LQual.print(llvm::dbgs(), Ctx.getPrintingPolicy());
llvm::dbgs() << "\n\tremaining on RType: ";
RQual.print(llvm::dbgs(), Ctx.getPrintingPolicy());
llvm::dbgs() << '\n';);
// If there are no other non-cvr non-common qualifiers left, we can deduce
// that mixability isn't broken.
Ret.HasMixabilityBreakingQualifiers =
LQual.hasQualifiers() || RQual.hasQualifiers();
return Ret;
}
/// Approximate the way how LType and RType might refer to "essentially the
/// same" type, in a sense that at a particular call site, an expression of
/// type LType and RType might be successfully passed to a variable (in our
/// specific case, a parameter) of type RType and LType, respectively.
/// Note the swapped order!
///
/// The returned data structure is not guaranteed to be properly set, as this
/// function is potentially recursive. It is the caller's responsibility to
/// call sanitize() on the result once the recursion is over.
static MixData
calculateMixability(const TheCheck &Check, QualType LType, QualType RType,
const ASTContext &Ctx,
ImplicitConversionModellingMode ImplicitMode) {
LLVM_DEBUG(llvm::dbgs() << ">>> calculateMixability for LType:\n";
LType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n";
RType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';);
if (LType == RType) {
LLVM_DEBUG(llvm::dbgs() << "<<< calculateMixability. Trivial equality.\n");
return {MixFlags::Trivial, LType};
}
// Dissolve certain type sugars that do not affect the mixability of one type
// with the other, and also do not require any sort of elaboration for the
// user to understand.
if (isUselessSugar(LType.getTypePtr())) {
LLVM_DEBUG(llvm::dbgs()
<< "--- calculateMixability. LHS is useless sugar.\n");
return calculateMixability(Check, LType.getSingleStepDesugaredType(Ctx),
RType, Ctx, ImplicitMode);
}
if (isUselessSugar(RType.getTypePtr())) {
LLVM_DEBUG(llvm::dbgs()
<< "--- calculateMixability. RHS is useless sugar.\n");
return calculateMixability(
Check, LType, RType.getSingleStepDesugaredType(Ctx), Ctx, ImplicitMode);
}
const auto *LLRef = LType->getAs<LValueReferenceType>();
const auto *RLRef = RType->getAs<LValueReferenceType>();
if (LLRef && RLRef) {
LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. LHS and RHS are &.\n");
return calculateMixability(Check, LLRef->getPointeeType(),
RLRef->getPointeeType(), Ctx, ImplicitMode)
.withCommonTypeTransformed(
[&Ctx](QualType QT) { return Ctx.getLValueReferenceType(QT); });
}
// At a particular call site, what could be passed to a 'T' or 'const T' might
// also be passed to a 'const T &' without the call site putting a direct
// side effect on the passed expressions.
if (LLRef) {
LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. LHS is &.\n");
return isLRefEquallyBindingToType(Check, LLRef, RType, Ctx, false,
ImplicitMode) |
MixFlags::ReferenceBind;
}
if (RLRef) {
LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. RHS is &.\n");
return isLRefEquallyBindingToType(Check, RLRef, LType, Ctx, true,
ImplicitMode) |
MixFlags::ReferenceBind;
}
if (LType->getAs<TypedefType>()) {
LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. LHS is typedef.\n");
return calculateMixability(Check, LType.getSingleStepDesugaredType(Ctx),
RType, Ctx, ImplicitMode) |
MixFlags::TypeAlias;
}
if (RType->getAs<TypedefType>()) {
LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. RHS is typedef.\n");
return calculateMixability(Check, LType,
RType.getSingleStepDesugaredType(Ctx), Ctx,
ImplicitMode) |
MixFlags::TypeAlias;
}
// A parameter of type 'cvr1 T' and another of potentially differently
// qualified 'cvr2 T' may bind with the same power, if the user so requested.
//
// Whether to do this check for the inner unqualified types.
bool CompareUnqualifiedTypes = false;
if (LType.getLocalCVRQualifiers() != RType.getLocalCVRQualifiers()) {
LLVM_DEBUG(if (LType.getLocalCVRQualifiers()) {
llvm::dbgs() << "--- calculateMixability. LHS has CVR-Qualifiers: ";
Qualifiers::fromCVRMask(LType.getLocalCVRQualifiers())
.print(llvm::dbgs(), Ctx.getPrintingPolicy());
llvm::dbgs() << '\n';
});
LLVM_DEBUG(if (RType.getLocalCVRQualifiers()) {
llvm::dbgs() << "--- calculateMixability. RHS has CVR-Qualifiers: ";
Qualifiers::fromCVRMask(RType.getLocalCVRQualifiers())
.print(llvm::dbgs(), Ctx.getPrintingPolicy());
llvm::dbgs() << '\n';
});
if (!Check.QualifiersMix) {
LLVM_DEBUG(llvm::dbgs()
<< "<<< calculateMixability. QualifiersMix turned off - not "
"mixable.\n");
return {MixFlags::None};
}
CompareUnqualifiedTypes = true;
}
// Whether the two types had the same CVR qualifiers.
bool OriginallySameQualifiers = false;
if (LType.getLocalCVRQualifiers() == RType.getLocalCVRQualifiers() &&
LType.getLocalCVRQualifiers() != 0) {
LLVM_DEBUG(if (LType.getLocalCVRQualifiers()) {
llvm::dbgs()
<< "--- calculateMixability. LHS and RHS have same CVR-Qualifiers: ";
Qualifiers::fromCVRMask(LType.getLocalCVRQualifiers())
.print(llvm::dbgs(), Ctx.getPrintingPolicy());
llvm::dbgs() << '\n';
});
CompareUnqualifiedTypes = true;
OriginallySameQualifiers = true;
}
if (CompareUnqualifiedTypes) {
NonCVRQualifiersResult AdditionalQuals =
getNonCVRQualifiers(Ctx, LType, RType);
if (AdditionalQuals.HasMixabilityBreakingQualifiers) {
LLVM_DEBUG(llvm::dbgs() << "<<< calculateMixability. Additional "
"non-equal incompatible qualifiers.\n");
return {MixFlags::None};
}
MixData UnqualifiedMixability =
calculateMixability(Check, LType.getLocalUnqualifiedType(),
RType.getLocalUnqualifiedType(), Ctx, ImplicitMode)
.withCommonTypeTransformed([&AdditionalQuals, &Ctx](QualType QT) {
// Once the mixability was deduced, apply the qualifiers common
// to the two type back onto the diagnostic printout.
return Ctx.getQualifiedType(QT, AdditionalQuals.CommonQualifiers);
});
if (!OriginallySameQualifiers)
// User-enabled qualifier change modelled for the mix.
return UnqualifiedMixability | MixFlags::Qualifiers;
// Apply the same qualifier back into the found common type if they were
// the same.
return UnqualifiedMixability.withCommonTypeTransformed(
[&Ctx, LType](QualType QT) {
return Ctx.getQualifiedType(QT, LType.getLocalQualifiers());
});
}
// Certain constructs match on the last catch-all getCanonicalType() equality,
// which is perhaps something not what we want. If this variable is true,
// the canonical type equality will be ignored.
bool RecursiveReturnDiscardingCanonicalType = false;
if (LType->isPointerType() && RType->isPointerType()) {
// If both types are pointers, and pointed to the exact same type,
// LType == RType took care of that. Try to see if the pointee type has
// some other match. However, this must not consider implicit conversions.
LLVM_DEBUG(llvm::dbgs()
<< "--- calculateMixability. LHS and RHS are Ptrs.\n");
MixData MixOfPointee =
calculateMixability(Check, LType->getPointeeType(),
RType->getPointeeType(), Ctx,
ImplicitConversionModellingMode::None)
.withCommonTypeTransformed(
[&Ctx](QualType QT) { return Ctx.getPointerType(QT); });
if (hasFlag(MixOfPointee.Flags,
MixFlags::WorkaroundDisableCanonicalEquivalence))
RecursiveReturnDiscardingCanonicalType = true;
MixOfPointee.sanitize();
if (MixOfPointee.indicatesMixability()) {
LLVM_DEBUG(llvm::dbgs()
<< "<<< calculateMixability. Pointees are mixable.\n");
return MixOfPointee;
}
}
if (ImplicitMode > ImplicitConversionModellingMode::None) {
LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. Start implicit...\n");
MixData MixLTR =
approximateImplicitConversion(Check, LType, RType, Ctx, ImplicitMode);
LLVM_DEBUG(
if (hasFlag(MixLTR.Flags, MixFlags::ImplicitConversion)) llvm::dbgs()
<< "--- calculateMixability. Implicit Left -> Right found.\n";);
if (ImplicitMode ==
ImplicitConversionModellingMode::OneWaySingleStandardOnly &&
MixLTR.Conversion && !MixLTR.Conversion.AfterFirstStandard.isNull() &&
MixLTR.Conversion.UDConvKind == ConversionSequence::UDCK_None &&
MixLTR.Conversion.AfterSecondStandard.isNull()) {
// The invoker of the method requested only modelling a single standard
// conversion, in only the forward direction, and they got just that.
LLVM_DEBUG(llvm::dbgs() << "<<< calculateMixability. Implicit "
"conversion, one-way, standard-only.\n");
return {MixFlags::ImplicitConversion, MixLTR.Conversion};
}
// Otherwise if the invoker requested a full modelling, do the other
// direction as well.
MixData MixRTL =
approximateImplicitConversion(Check, RType, LType, Ctx, ImplicitMode);
LLVM_DEBUG(
if (hasFlag(MixRTL.Flags, MixFlags::ImplicitConversion)) llvm::dbgs()
<< "--- calculateMixability. Implicit Right -> Left found.\n";);
if (MixLTR.Conversion && MixRTL.Conversion) {
LLVM_DEBUG(
llvm::dbgs()
<< "<<< calculateMixability. Implicit conversion, bidirectional.\n");
return {MixFlags::ImplicitConversion, MixLTR.Conversion,
MixRTL.Conversion};
}
}
if (RecursiveReturnDiscardingCanonicalType)
LLVM_DEBUG(llvm::dbgs() << "--- calculateMixability. Before CanonicalType, "
"Discard was enabled.\n");
// Certain kinds unfortunately need to be side-stepped for canonical type
// matching.
if (LType->getAs<FunctionProtoType>() || RType->getAs<FunctionProtoType>()) {
// Unfortunately, the canonical type of a function pointer becomes the
// same even if exactly one is "noexcept" and the other isn't, making us
// give a false positive report irrespective of implicit conversions.
LLVM_DEBUG(llvm::dbgs()
<< "--- calculateMixability. Discarding potential canonical "
"equivalence on FunctionProtoTypes.\n");
RecursiveReturnDiscardingCanonicalType = true;
}
MixData MixToReturn{MixFlags::None};
// If none of the previous logic found a match, try if Clang otherwise
// believes the types to be the same.
QualType LCanonical = LType.getCanonicalType();
if (LCanonical == RType.getCanonicalType()) {
LLVM_DEBUG(llvm::dbgs()
<< "<<< calculateMixability. Same CanonicalType.\n");
MixToReturn = {MixFlags::Canonical, LCanonical};
}
if (RecursiveReturnDiscardingCanonicalType)
MixToReturn |= MixFlags::WorkaroundDisableCanonicalEquivalence;
LLVM_DEBUG(if (MixToReturn.Flags == MixFlags::None) llvm::dbgs()
<< "<<< calculateMixability. No match found.\n");
return MixToReturn;
}
/// Calculates if the reference binds an expression of the given type. This is
/// true iff 'LRef' is some 'const T &' type, and the 'Ty' is 'T' or 'const T'.
///
/// \param ImplicitMode is forwarded in the possible recursive call to
/// calculateMixability.
static MixData
isLRefEquallyBindingToType(const TheCheck &Check,
const LValueReferenceType *LRef, QualType Ty,
const ASTContext &Ctx, bool IsRefRHS,
ImplicitConversionModellingMode ImplicitMode) {
LLVM_DEBUG(llvm::dbgs() << ">>> isLRefEquallyBindingToType for LRef:\n";
LRef->dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand Type:\n";
Ty.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';);
QualType ReferredType = LRef->getPointeeType();
if (!ReferredType.isLocalConstQualified() &&
ReferredType->getAs<TypedefType>()) {
LLVM_DEBUG(
llvm::dbgs()
<< "--- isLRefEquallyBindingToType. Non-const LRef to Typedef.\n");
ReferredType = ReferredType.getDesugaredType(Ctx);
if (!ReferredType.isLocalConstQualified()) {
LLVM_DEBUG(llvm::dbgs()
<< "<<< isLRefEquallyBindingToType. Typedef is not const.\n");
return {MixFlags::None};
}
LLVM_DEBUG(llvm::dbgs() << "--- isLRefEquallyBindingToType. Typedef is "
"const, considering as const LRef.\n");
} else if (!ReferredType.isLocalConstQualified()) {
LLVM_DEBUG(llvm::dbgs()
<< "<<< isLRefEquallyBindingToType. Not const LRef.\n");
return {MixFlags::None};
};
assert(ReferredType.isLocalConstQualified() &&
"Reaching this point means we are sure LRef is effectively a const&.");
if (ReferredType == Ty) {
LLVM_DEBUG(
llvm::dbgs()
<< "<<< isLRefEquallyBindingToType. Type of referred matches.\n");
return {MixFlags::Trivial, ReferredType};
}
QualType NonConstReferredType = ReferredType;
NonConstReferredType.removeLocalConst();
if (NonConstReferredType == Ty) {
LLVM_DEBUG(llvm::dbgs() << "<<< isLRefEquallyBindingToType. Type of "
"referred matches to non-const qualified.\n");
return {MixFlags::Trivial, NonConstReferredType};
}
LLVM_DEBUG(
llvm::dbgs()
<< "--- isLRefEquallyBindingToType. Checking mix for underlying type.\n");
return IsRefRHS ? calculateMixability(Check, Ty, NonConstReferredType, Ctx,
ImplicitMode)
: calculateMixability(Check, NonConstReferredType, Ty, Ctx,
ImplicitMode);
}
static inline bool isDerivedToBase(const CXXRecordDecl *Derived,
const CXXRecordDecl *Base) {
return Derived && Base && Derived->isCompleteDefinition() &&
Base->isCompleteDefinition() && Derived->isDerivedFrom(Base);
}
static std::optional<QualType>
approximateStandardConversionSequence(const TheCheck &Check, QualType From,
QualType To, const ASTContext &Ctx) {
LLVM_DEBUG(llvm::dbgs() << ">>> approximateStdConv for LType:\n";
From.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n";
To.dump(llvm::dbgs(), Ctx); llvm::dbgs() << '\n';);
// A standard conversion sequence consists of the following, in order:
// * Maybe either LValue->RValue conv., Array->Ptr conv., Function->Ptr conv.
// * Maybe Numeric promotion or conversion.
// * Maybe function pointer conversion.
// * Maybe qualifier adjustments.
QualType WorkType = From;
// Get out the qualifiers of the original type. This will always be
// re-applied to the WorkType to ensure it is the same qualification as the
// original From was.
auto QualifiersToApply = From.split().Quals.getAsOpaqueValue();
// LValue->RValue is irrelevant for the check, because it is a thing to be
// done at a call site, and will be performed if need be performed.
// Array->Pointer decay is handled by the main method in desugaring
// the parameter's DecayedType as "useless sugar".
// Function->Pointer conversions are also irrelevant, because a
// "FunctionType" cannot be the type of a parameter variable, so this
// conversion is only meaningful at call sites.
// Numeric promotions and conversions.
const auto *FromBuiltin = WorkType->getAs<BuiltinType>();
const auto *ToBuiltin = To->getAs<BuiltinType>();
bool FromNumeric = FromBuiltin && (FromBuiltin->isIntegerType() ||
FromBuiltin->isFloatingType());
bool ToNumeric =
ToBuiltin && (ToBuiltin->isIntegerType() || ToBuiltin->isFloatingType());
if (FromNumeric && ToNumeric) {
// If both are integral types, the numeric conversion is performed.
// Reapply the qualifiers of the original type, however, so
// "const int -> double" in this case moves over to
// "const double -> double".
LLVM_DEBUG(llvm::dbgs()
<< "--- approximateStdConv. Conversion between numerics.\n");
WorkType = QualType{ToBuiltin, QualifiersToApply};
}
const auto *FromEnum = WorkType->getAs<EnumType>();
const auto *ToEnum = To->getAs<EnumType>();
if (FromEnum && ToNumeric && FromEnum->isUnscopedEnumerationType()) {
// Unscoped enumerations (or enumerations in C) convert to numerics.
LLVM_DEBUG(llvm::dbgs()
<< "--- approximateStdConv. Unscoped enum to numeric.\n");
WorkType = QualType{ToBuiltin, QualifiersToApply};
} else if (FromNumeric && ToEnum && ToEnum->isUnscopedEnumerationType()) {
// Numeric types convert to enumerations only in C.
if (Ctx.getLangOpts().CPlusPlus) {
LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Numeric to unscoped "
"enum, not possible in C++!\n");
return {};
}
LLVM_DEBUG(llvm::dbgs()
<< "--- approximateStdConv. Numeric to unscoped enum.\n");
WorkType = QualType{ToEnum, QualifiersToApply};
}
// Check for pointer conversions.
const auto *FromPtr = WorkType->getAs<PointerType>();
const auto *ToPtr = To->getAs<PointerType>();
if (FromPtr && ToPtr) {
if (ToPtr->isVoidPointerType()) {
LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. To void pointer.\n");
WorkType = QualType{ToPtr, QualifiersToApply};
}
const auto *FromRecordPtr = FromPtr->getPointeeCXXRecordDecl();
const auto *ToRecordPtr = ToPtr->getPointeeCXXRecordDecl();
if (isDerivedToBase(FromRecordPtr, ToRecordPtr)) {
LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. Derived* to Base*\n");
WorkType = QualType{ToPtr, QualifiersToApply};
}
}
// Model the slicing Derived-to-Base too, as "BaseT temporary = derived;"
// can also be compiled.
const auto *FromRecord = WorkType->getAsCXXRecordDecl();
const auto *ToRecord = To->getAsCXXRecordDecl();
if (isDerivedToBase(FromRecord, ToRecord)) {
LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. Derived To Base.\n");
WorkType = QualType{ToRecord->getTypeForDecl(), QualifiersToApply};
}
if (Ctx.getLangOpts().CPlusPlus17 && FromPtr && ToPtr) {
// Function pointer conversion: A noexcept function pointer can be passed
// to a non-noexcept one.
const auto *FromFunctionPtr =
FromPtr->getPointeeType()->getAs<FunctionProtoType>();
const auto *ToFunctionPtr =
ToPtr->getPointeeType()->getAs<FunctionProtoType>();
if (FromFunctionPtr && ToFunctionPtr &&
FromFunctionPtr->hasNoexceptExceptionSpec() &&
!ToFunctionPtr->hasNoexceptExceptionSpec()) {
LLVM_DEBUG(llvm::dbgs() << "--- approximateStdConv. noexcept function "
"pointer to non-noexcept.\n");
WorkType = QualType{ToPtr, QualifiersToApply};
}
}
// Qualifier adjustments are modelled according to the user's request in
// the QualifiersMix check config.
LLVM_DEBUG(llvm::dbgs()
<< "--- approximateStdConv. Trying qualifier adjustment...\n");
MixData QualConv = calculateMixability(Check, WorkType, To, Ctx,
ImplicitConversionModellingMode::None);
QualConv.sanitize();
if (hasFlag(QualConv.Flags, MixFlags::Qualifiers)) {
LLVM_DEBUG(llvm::dbgs()
<< "<<< approximateStdConv. Qualifiers adjusted.\n");
WorkType = To;
}
if (WorkType == To) {
LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Reached 'To' type.\n");
return {WorkType};
}
LLVM_DEBUG(llvm::dbgs() << "<<< approximateStdConv. Did not reach 'To'.\n");
return {};
}
namespace {
/// Helper class for storing possible user-defined conversion calls that
/// *could* take place in an implicit conversion, and selecting the one that
/// most likely *does*, if any.
class UserDefinedConversionSelector {
public:
/// The conversion associated with a conversion function, together with the
/// mixability flags of the conversion function's parameter or return type
/// to the rest of the sequence the selector is used in, and the sequence
/// that applied through the conversion itself.
struct PreparedConversion {
const CXXMethodDecl *ConversionFun;
MixFlags Flags;
ConversionSequence Seq;
PreparedConversion(const CXXMethodDecl *CMD, MixFlags F,
ConversionSequence S)
: ConversionFun(CMD), Flags(F), Seq(S) {}
};
UserDefinedConversionSelector(const TheCheck &Check) : Check(Check) {}
/// Adds the conversion between the two types for the given function into
/// the possible implicit conversion set. FromType and ToType is either:
/// * the result of a standard sequence and a converting ctor parameter
/// * the return type of a conversion operator and the expected target of
/// an implicit conversion.
void addConversion(const CXXMethodDecl *ConvFun, QualType FromType,
QualType ToType) {
// Try to go from the FromType to the ToType with only a single implicit
// conversion, to see if the conversion function is applicable.
MixData Mix = calculateMixability(
Check, FromType, ToType, ConvFun->getASTContext(),
ImplicitConversionModellingMode::OneWaySingleStandardOnly);
Mix.sanitize();
if (!Mix.indicatesMixability())
return;
LLVM_DEBUG(llvm::dbgs() << "--- tryConversion. Found viable with flags: "
<< formatMixFlags(Mix.Flags) << '\n');
FlaggedConversions.emplace_back(ConvFun, Mix.Flags, Mix.Conversion);
}
/// Selects the best conversion function that is applicable from the
/// prepared set of potential conversion functions taken.
std::optional<PreparedConversion> operator()() const {
if (FlaggedConversions.empty()) {
LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Empty.\n");
return {};
}
if (FlaggedConversions.size() == 1) {
LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Single.\n");
return FlaggedConversions.front();
}
std::optional<PreparedConversion> BestConversion;
unsigned short HowManyGoodConversions = 0;
for (const auto &Prepared : FlaggedConversions) {
LLVM_DEBUG(llvm::dbgs() << "--- selectUserDefinedConv. Candidate flags: "
<< formatMixFlags(Prepared.Flags) << '\n');
if (!BestConversion) {
BestConversion = Prepared;
++HowManyGoodConversions;
continue;
}
bool BestConversionHasImplicit =
hasFlag(BestConversion->Flags, MixFlags::ImplicitConversion);
bool ThisConversionHasImplicit =
hasFlag(Prepared.Flags, MixFlags::ImplicitConversion);
if (!BestConversionHasImplicit && ThisConversionHasImplicit)
// This is a worse conversion, because a better one was found earlier.
continue;
if (BestConversionHasImplicit && !ThisConversionHasImplicit) {
// If the so far best selected conversion needs a previous implicit
// conversion to match the user-defined converting function, but this
// conversion does not, this is a better conversion, and we can throw
// away the previously selected conversion(s).
BestConversion = Prepared;
HowManyGoodConversions = 1;
continue;
}
if (BestConversionHasImplicit == ThisConversionHasImplicit)
// The current conversion is the same in term of goodness than the
// already selected one.
++HowManyGoodConversions;
}
if (HowManyGoodConversions == 1) {
LLVM_DEBUG(llvm::dbgs()
<< "--- selectUserDefinedConv. Unique result. Flags: "
<< formatMixFlags(BestConversion->Flags) << '\n');
return BestConversion;
}
LLVM_DEBUG(llvm::dbgs()
<< "--- selectUserDefinedConv. No, or ambiguous.\n");
return {};
}
private:
llvm::SmallVector<PreparedConversion, 2> FlaggedConversions;
const TheCheck &Check;
};
} // namespace
static std::optional<ConversionSequence>
tryConversionOperators(const TheCheck &Check, const CXXRecordDecl *RD,
QualType ToType) {
if (!RD || !RD->isCompleteDefinition())
return {};
RD = RD->getDefinition();
LLVM_DEBUG(llvm::dbgs() << ">>> tryConversionOperators: " << RD->getName()
<< " to:\n";
ToType.dump(llvm::dbgs(), RD->getASTContext());
llvm::dbgs() << '\n';);
UserDefinedConversionSelector ConversionSet{Check};
for (const NamedDecl *Method : RD->getVisibleConversionFunctions()) {
const auto *Con = dyn_cast<CXXConversionDecl>(Method);
if (!Con || Con->isExplicit())
continue;
LLVM_DEBUG(llvm::dbgs() << "--- tryConversionOperators. Trying:\n";
Con->dump(llvm::dbgs()); llvm::dbgs() << '\n';);
// Try to go from the result of conversion operator to the expected type,
// without calculating another user-defined conversion.
ConversionSet.addConversion(Con, Con->getConversionType(), ToType);
}
if (std::optional<UserDefinedConversionSelector::PreparedConversion>
SelectedConversion = ConversionSet()) {
QualType RecordType{RD->getTypeForDecl(), 0};
ConversionSequence Result{RecordType, ToType};
// The conversion from the operator call's return type to ToType was
// modelled as a "pre-conversion" in the operator call, but it is the
// "post-conversion" from the point of view of the original conversion
// we are modelling.
Result.AfterSecondStandard = SelectedConversion->Seq.AfterFirstStandard;
ConversionSequence::UserDefinedConversionOperator ConvOp;
ConvOp.Fun = cast<CXXConversionDecl>(SelectedConversion->ConversionFun);
ConvOp.UserDefinedType = RecordType;
ConvOp.ConversionOperatorResultType = ConvOp.Fun->getConversionType();
Result.setConversion(ConvOp);
LLVM_DEBUG(llvm::dbgs() << "<<< tryConversionOperators. Found result.\n");
return Result;
}
LLVM_DEBUG(llvm::dbgs() << "<<< tryConversionOperators. No conversion.\n");
return {};
}
static std::optional<ConversionSequence>
tryConvertingConstructors(const TheCheck &Check, QualType FromType,
const CXXRecordDecl *RD) {
if (!RD || !RD->isCompleteDefinition())
return {};
RD = RD->getDefinition();
LLVM_DEBUG(llvm::dbgs() << ">>> tryConveringConstructors: " << RD->getName()
<< " from:\n";
FromType.dump(llvm::dbgs(), RD->getASTContext());
llvm::dbgs() << '\n';);
UserDefinedConversionSelector ConversionSet{Check};
for (const CXXConstructorDecl *Con : RD->ctors()) {
if (Con->isCopyOrMoveConstructor() ||
!Con->isConvertingConstructor(/* AllowExplicit =*/false))
continue;
LLVM_DEBUG(llvm::dbgs() << "--- tryConvertingConstructors. Trying:\n";
Con->dump(llvm::dbgs()); llvm::dbgs() << '\n';);
// Try to go from the original FromType to the converting constructor's
// parameter type without another user-defined conversion.
ConversionSet.addConversion(Con, FromType, Con->getParamDecl(0)->getType());
}
if (std::optional<UserDefinedConversionSelector::PreparedConversion>
SelectedConversion = ConversionSet()) {
QualType RecordType{RD->getTypeForDecl(), 0};
ConversionSequence Result{FromType, RecordType};
Result.AfterFirstStandard = SelectedConversion->Seq.AfterFirstStandard;
ConversionSequence::UserDefinedConvertingConstructor Ctor;
Ctor.Fun = cast<CXXConstructorDecl>(SelectedConversion->ConversionFun);
Ctor.ConstructorParameterType = Ctor.Fun->getParamDecl(0)->getType();
Ctor.UserDefinedType = RecordType;
Result.setConversion(Ctor);
LLVM_DEBUG(llvm::dbgs()
<< "<<< tryConvertingConstructors. Found result.\n");
return Result;
}
LLVM_DEBUG(llvm::dbgs() << "<<< tryConvertingConstructors. No conversion.\n");
return {};
}
/// Returns whether an expression of LType can be used in an RType context, as
/// per the implicit conversion rules.
///
/// Note: the result of this operation, unlike that of calculateMixability, is
/// **NOT** symmetric.
static MixData
approximateImplicitConversion(const TheCheck &Check, QualType LType,
QualType RType, const ASTContext &Ctx,
ImplicitConversionModellingMode ImplicitMode) {
LLVM_DEBUG(llvm::dbgs() << ">>> approximateImplicitConversion for LType:\n";
LType.dump(llvm::dbgs(), Ctx); llvm::dbgs() << "\nand RType:\n";
RType.dump(llvm::dbgs(), Ctx);
llvm::dbgs() << "\nimplicit mode: "; switch (ImplicitMode) {
case ImplicitConversionModellingMode::None:
llvm::dbgs() << "None";
break;
case ImplicitConversionModellingMode::All:
llvm::dbgs() << "All";
break;
case ImplicitConversionModellingMode::OneWaySingleStandardOnly:
llvm::dbgs() << "OneWay, Single, STD Only";
break;
} llvm::dbgs() << '\n';);
if (LType == RType)
return {MixFlags::Trivial, LType};
// An implicit conversion sequence consists of the following, in order:
// * Maybe standard conversion sequence.
// * Maybe user-defined conversion.
// * Maybe standard conversion sequence.
ConversionSequence ImplicitSeq{LType, RType};
QualType WorkType = LType;
std::optional<QualType> AfterFirstStdConv =
approximateStandardConversionSequence(Check, LType, RType, Ctx);
if (AfterFirstStdConv) {
LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Standard "
"Pre-Conversion found!\n");
ImplicitSeq.AfterFirstStandard = *AfterFirstStdConv;
WorkType = ImplicitSeq.AfterFirstStandard;
}
if (ImplicitMode == ImplicitConversionModellingMode::OneWaySingleStandardOnly)
// If the caller only requested modelling of a standard conversion, bail.
return {ImplicitSeq.AfterFirstStandard.isNull()
? MixFlags::None
: MixFlags::ImplicitConversion,
ImplicitSeq};
if (Ctx.getLangOpts().CPlusPlus) {
bool FoundConversionOperator = false, FoundConvertingCtor = false;
if (const auto *LRD = WorkType->getAsCXXRecordDecl()) {
std::optional<ConversionSequence> ConversionOperatorResult =
tryConversionOperators(Check, LRD, RType);
if (ConversionOperatorResult) {
LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Found "
"conversion operator.\n");
ImplicitSeq.update(*ConversionOperatorResult);
WorkType = ImplicitSeq.getTypeAfterUserDefinedConversion();
FoundConversionOperator = true;
}
}
if (const auto *RRD = RType->getAsCXXRecordDecl()) {
// Use the original "LType" here, and not WorkType, because the
// conversion to the converting constructors' parameters will be
// modelled in the recursive call.
std::optional<ConversionSequence> ConvCtorResult =
tryConvertingConstructors(Check, LType, RRD);
if (ConvCtorResult) {
LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Found "
"converting constructor.\n");
ImplicitSeq.update(*ConvCtorResult);
WorkType = ImplicitSeq.getTypeAfterUserDefinedConversion();
FoundConvertingCtor = true;
}
}
if (FoundConversionOperator && FoundConvertingCtor) {
// If both an operator and a ctor matches, the sequence is ambiguous.
LLVM_DEBUG(llvm::dbgs()
<< "<<< approximateImplicitConversion. Found both "
"user-defined conversion kinds in the same sequence!\n");
return {MixFlags::None};
}
}
// After the potential user-defined conversion, another standard conversion
// sequence might exist.
LLVM_DEBUG(
llvm::dbgs()
<< "--- approximateImplicitConversion. Try to find post-conversion.\n");
MixData SecondStdConv = approximateImplicitConversion(
Check, WorkType, RType, Ctx,
ImplicitConversionModellingMode::OneWaySingleStandardOnly);
if (SecondStdConv.indicatesMixability()) {
LLVM_DEBUG(llvm::dbgs() << "--- approximateImplicitConversion. Standard "
"Post-Conversion found!\n");
// The single-step modelling puts the modelled conversion into the "PreStd"
// variable in the recursive call, but from the PoV of this function, it is
// the post-conversion.
ImplicitSeq.AfterSecondStandard =
SecondStdConv.Conversion.AfterFirstStandard;
WorkType = ImplicitSeq.AfterSecondStandard;
}
if (ImplicitSeq) {
LLVM_DEBUG(llvm::dbgs()
<< "<<< approximateImplicitConversion. Found a conversion.\n");
return {MixFlags::ImplicitConversion, ImplicitSeq};
}
LLVM_DEBUG(
llvm::dbgs() << "<<< approximateImplicitConversion. No match found.\n");
return {MixFlags::None};
}
static MixableParameterRange modelMixingRange(
const TheCheck &Check, const FunctionDecl *FD, std::size_t StartIndex,
const filter::SimilarlyUsedParameterPairSuppressor &UsageBasedSuppressor) {
std::size_t NumParams = FD->getNumParams();
assert(StartIndex < NumParams && "out of bounds for start");
const ASTContext &Ctx = FD->getASTContext();
MixableParameterRange Ret;
// A parameter at index 'StartIndex' had been trivially "checked".
Ret.NumParamsChecked = 1;
for (std::size_t I = StartIndex + 1; I < NumParams; ++I) {
const ParmVarDecl *Ith = FD->getParamDecl(I);
StringRef ParamName = Ith->getName();
LLVM_DEBUG(llvm::dbgs()
<< "Check param #" << I << " '" << ParamName << "'...\n");
if (filter::isIgnoredParameter(Check, Ith)) {
LLVM_DEBUG(llvm::dbgs() << "Param #" << I << " is ignored. Break!\n");
break;
}
StringRef PrevParamName = FD->getParamDecl(I - 1)->getName();
if (!ParamName.empty() && !PrevParamName.empty() &&
filter::prefixSuffixCoverUnderThreshold(
Check.NamePrefixSuffixSilenceDissimilarityTreshold, PrevParamName,
ParamName)) {
LLVM_DEBUG(llvm::dbgs() << "Parameter '" << ParamName
<< "' follows a pattern with previous parameter '"
<< PrevParamName << "'. Break!\n");
break;
}
// Now try to go forward and build the range of [Start, ..., I, I + 1, ...]
// parameters that can be messed up at a call site.
MixableParameterRange::MixVector MixesOfIth;
for (std::size_t J = StartIndex; J < I; ++J) {
const ParmVarDecl *Jth = FD->getParamDecl(J);
LLVM_DEBUG(llvm::dbgs()
<< "Check mix of #" << J << " against #" << I << "...\n");
if (isSimilarlyUsedParameter(UsageBasedSuppressor, Ith, Jth)) {
// Consider the two similarly used parameters to not be possible in a
// mix-up at the user's request, if they enabled this heuristic.
LLVM_DEBUG(llvm::dbgs() << "Parameters #" << I << " and #" << J
<< " deemed related, ignoring...\n");
// If the parameter #I and #J mixes, then I is mixable with something
// in the current range, so the range has to be broken and I not
// included.
MixesOfIth.clear();
break;
}
Mix M{Jth, Ith,
calculateMixability(Check, Jth->getType(), Ith->getType(), Ctx,
Check.ModelImplicitConversions
? ImplicitConversionModellingMode::All
: ImplicitConversionModellingMode::None)};
LLVM_DEBUG(llvm::dbgs() << "Mix flags (raw) : "
<< formatMixFlags(M.flags()) << '\n');
M.sanitize();
LLVM_DEBUG(llvm::dbgs() << "Mix flags (after sanitize): "
<< formatMixFlags(M.flags()) << '\n');
assert(M.flagsValid() && "All flags decayed!");
if (M.mixable())
MixesOfIth.emplace_back(std::move(M));
}
if (MixesOfIth.empty()) {
// If there weren't any new mixes stored for Ith, the range is
// [Start, ..., I].
LLVM_DEBUG(llvm::dbgs()
<< "Param #" << I
<< " does not mix with any in the current range. Break!\n");
break;
}
Ret.Mixes.insert(Ret.Mixes.end(), MixesOfIth.begin(), MixesOfIth.end());
++Ret.NumParamsChecked; // Otherwise a new param was iterated.
}
return Ret;
}
} // namespace model
/// Matches DeclRefExprs and their ignorable wrappers to ParmVarDecls.
AST_MATCHER_FUNCTION(ast_matchers::internal::Matcher<Stmt>, paramRefExpr) {
return expr(ignoringParenImpCasts(ignoringElidableConstructorCall(
declRefExpr(to(parmVarDecl().bind("param"))))));
}
namespace filter {
/// Returns whether the parameter's name or the parameter's type's name is
/// configured by the user to be ignored from analysis and diagnostic.
static bool isIgnoredParameter(const TheCheck &Check, const ParmVarDecl *Node) {
LLVM_DEBUG(llvm::dbgs() << "Checking if '" << Node->getName()
<< "' is ignored.\n");
if (!Node->getIdentifier())
return llvm::is_contained(Check.IgnoredParameterNames, "\"\"");
StringRef NodeName = Node->getName();
if (llvm::is_contained(Check.IgnoredParameterNames, NodeName)) {
LLVM_DEBUG(llvm::dbgs() << "\tName ignored.\n");
return true;
}
StringRef NodeTypeName = [Node] {
const ASTContext &Ctx = Node->getASTContext();
const SourceManager &SM = Ctx.getSourceManager();
SourceLocation B = Node->getTypeSpecStartLoc();
SourceLocation E = Node->getTypeSpecEndLoc();
LangOptions LO;
LLVM_DEBUG(llvm::dbgs() << "\tType name code is '"
<< Lexer::getSourceText(
CharSourceRange::getTokenRange(B, E), SM, LO)
<< "'...\n");
if (B.isMacroID()) {
LLVM_DEBUG(llvm::dbgs() << "\t\tBeginning is macro.\n");
B = SM.getTopMacroCallerLoc(B);
}
if (E.isMacroID()) {
LLVM_DEBUG(llvm::dbgs() << "\t\tEnding is macro.\n");
E = Lexer::getLocForEndOfToken(SM.getTopMacroCallerLoc(E), 0, SM, LO);
}
LLVM_DEBUG(llvm::dbgs() << "\tType name code is '"
<< Lexer::getSourceText(
CharSourceRange::getTokenRange(B, E), SM, LO)
<< "'...\n");
return Lexer::getSourceText(CharSourceRange::getTokenRange(B, E), SM, LO);
}();
LLVM_DEBUG(llvm::dbgs() << "\tType name is '" << NodeTypeName << "'\n");
if (!NodeTypeName.empty()) {
if (llvm::any_of(Check.IgnoredParameterTypeSuffixes,
[NodeTypeName](StringRef E) {
return !E.empty() && NodeTypeName.endswith(E);
})) {
LLVM_DEBUG(llvm::dbgs() << "\tType suffix ignored.\n");
return true;
}
}
return false;
}
/// This namespace contains the implementations for the suppression of
/// diagnostics from similarly-used ("related") parameters.
namespace relatedness_heuristic {
static constexpr std::size_t SmallDataStructureSize = 4;
template <typename T, std::size_t N = SmallDataStructureSize>
using ParamToSmallSetMap =
llvm::DenseMap<const ParmVarDecl *, llvm::SmallSet<T, N>>;
/// Returns whether the sets mapped to the two elements in the map have at
/// least one element in common.
template <typename MapTy, typename ElemTy>
bool lazyMapOfSetsIntersectionExists(const MapTy &Map, const ElemTy &E1,
const ElemTy &E2) {
auto E1Iterator = Map.find(E1);
auto E2Iterator = Map.find(E2);
if (E1Iterator == Map.end() || E2Iterator == Map.end())
return false;
for (const auto &E1SetElem : E1Iterator->second)
if (E2Iterator->second.contains(E1SetElem))
return true;
return false;
}
/// Implements the heuristic that marks two parameters related if there is
/// a usage for both in the same strict expression subtree. A strict
/// expression subtree is a tree which only includes Expr nodes, i.e. no
/// Stmts and no Decls.
class AppearsInSameExpr : public RecursiveASTVisitor<AppearsInSameExpr> {
using Base = RecursiveASTVisitor<AppearsInSameExpr>;
const FunctionDecl *FD;
const Expr *CurrentExprOnlyTreeRoot = nullptr;
llvm::DenseMap<const ParmVarDecl *,
llvm::SmallPtrSet<const Expr *, SmallDataStructureSize>>
ParentExprsForParamRefs;
public:
void setup(const FunctionDecl *FD) {
this->FD = FD;
TraverseFunctionDecl(const_cast<FunctionDecl *>(FD));
}
bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const {
return lazyMapOfSetsIntersectionExists(ParentExprsForParamRefs, Param1,
Param2);
}
bool TraverseDecl(Decl *D) {
CurrentExprOnlyTreeRoot = nullptr;
return Base::TraverseDecl(D);
}
bool TraverseStmt(Stmt *S, DataRecursionQueue *Queue = nullptr) {
if (auto *E = dyn_cast_or_null<Expr>(S)) {
bool RootSetInCurrentStackFrame = false;
if (!CurrentExprOnlyTreeRoot) {
CurrentExprOnlyTreeRoot = E;
RootSetInCurrentStackFrame = true;
}
bool Ret = Base::TraverseStmt(S);
if (RootSetInCurrentStackFrame)
CurrentExprOnlyTreeRoot = nullptr;
return Ret;
}
// A Stmt breaks the strictly Expr subtree.
CurrentExprOnlyTreeRoot = nullptr;
return Base::TraverseStmt(S);
}
bool VisitDeclRefExpr(DeclRefExpr *DRE) {
if (!CurrentExprOnlyTreeRoot)
return true;
if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
if (llvm::find(FD->parameters(), PVD))
ParentExprsForParamRefs[PVD].insert(CurrentExprOnlyTreeRoot);
return true;
}
};
/// Implements the heuristic that marks two parameters related if there are
/// two separate calls to the same function (overload) and the parameters are
/// passed to the same index in both calls, i.e f(a, b) and f(a, c) passes
/// b and c to the same index (2) of f(), marking them related.
class PassedToSameFunction {
ParamToSmallSetMap<std::pair<const FunctionDecl *, unsigned>> TargetParams;
public:
void setup(const FunctionDecl *FD) {
auto ParamsAsArgsInFnCalls =
match(functionDecl(forEachDescendant(
callExpr(forEachArgumentWithParam(
paramRefExpr(), parmVarDecl().bind("passed-to")))
.bind("call-expr"))),
*FD, FD->getASTContext());
for (const auto &Match : ParamsAsArgsInFnCalls) {
const auto *PassedParamOfThisFn = Match.getNodeAs<ParmVarDecl>("param");
const auto *CE = Match.getNodeAs<CallExpr>("call-expr");
const auto *PassedToParam = Match.getNodeAs<ParmVarDecl>("passed-to");
assert(PassedParamOfThisFn && CE && PassedToParam);
const FunctionDecl *CalledFn = CE->getDirectCallee();
if (!CalledFn)
continue;
std::optional<unsigned> TargetIdx;
unsigned NumFnParams = CalledFn->getNumParams();
for (unsigned Idx = 0; Idx < NumFnParams; ++Idx)
if (CalledFn->getParamDecl(Idx) == PassedToParam)
TargetIdx.emplace(Idx);
assert(TargetIdx && "Matched, but didn't find index?");
TargetParams[PassedParamOfThisFn].insert(
{CalledFn->getCanonicalDecl(), *TargetIdx});
}
}
bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const {
return lazyMapOfSetsIntersectionExists(TargetParams, Param1, Param2);
}
};
/// Implements the heuristic that marks two parameters related if the same
/// member is accessed (referred to) inside the current function's body.
class AccessedSameMemberOf {
ParamToSmallSetMap<const Decl *> AccessedMembers;
public:
void setup(const FunctionDecl *FD) {
auto MembersCalledOnParams = match(
functionDecl(forEachDescendant(
memberExpr(hasObjectExpression(paramRefExpr())).bind("mem-expr"))),
*FD, FD->getASTContext());
for (const auto &Match : MembersCalledOnParams) {
const auto *AccessedParam = Match.getNodeAs<ParmVarDecl>("param");
const auto *ME = Match.getNodeAs<MemberExpr>("mem-expr");
assert(AccessedParam && ME);
AccessedMembers[AccessedParam].insert(
ME->getMemberDecl()->getCanonicalDecl());
}
}
bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const {
return lazyMapOfSetsIntersectionExists(AccessedMembers, Param1, Param2);
}
};
/// Implements the heuristic that marks two parameters related if different
/// ReturnStmts return them from the function.
class Returned {
llvm::SmallVector<const ParmVarDecl *, SmallDataStructureSize> ReturnedParams;
public:
void setup(const FunctionDecl *FD) {
// TODO: Handle co_return.
auto ParamReturns = match(functionDecl(forEachDescendant(
returnStmt(hasReturnValue(paramRefExpr())))),
*FD, FD->getASTContext());
for (const auto &Match : ParamReturns) {
const auto *ReturnedParam = Match.getNodeAs<ParmVarDecl>("param");
assert(ReturnedParam);
if (find(FD->parameters(), ReturnedParam) == FD->param_end())
// Inside the subtree of a FunctionDecl there might be ReturnStmts of
// a parameter that isn't the parameter of the function, e.g. in the
// case of lambdas.
continue;
ReturnedParams.emplace_back(ReturnedParam);
}
}
bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const {
return llvm::is_contained(ReturnedParams, Param1) &&
llvm::is_contained(ReturnedParams, Param2);
}
};
} // namespace relatedness_heuristic
/// Helper class that is used to detect if two parameters of the same function
/// are used in a similar fashion, to suppress the result.
class SimilarlyUsedParameterPairSuppressor {
const bool Enabled;
relatedness_heuristic::AppearsInSameExpr SameExpr;
relatedness_heuristic::PassedToSameFunction PassToFun;
relatedness_heuristic::AccessedSameMemberOf SameMember;
relatedness_heuristic::Returned Returns;
public:
SimilarlyUsedParameterPairSuppressor(const FunctionDecl *FD, bool Enable)
: Enabled(Enable) {
if (!Enable)
return;
SameExpr.setup(FD);
PassToFun.setup(FD);
SameMember.setup(FD);
Returns.setup(FD);
}
/// Returns whether the specified two parameters are deemed similarly used
/// or related by the heuristics.
bool operator()(const ParmVarDecl *Param1, const ParmVarDecl *Param2) const {
if (!Enabled)
return false;
LLVM_DEBUG(llvm::dbgs()
<< "::: Matching similar usage / relatedness heuristic...\n");
if (SameExpr(Param1, Param2)) {
LLVM_DEBUG(llvm::dbgs() << "::: Used in the same expression.\n");
return true;
}
if (PassToFun(Param1, Param2)) {
LLVM_DEBUG(llvm::dbgs()
<< "::: Passed to same function in different calls.\n");
return true;
}
if (SameMember(Param1, Param2)) {
LLVM_DEBUG(llvm::dbgs()
<< "::: Same member field access or method called.\n");
return true;
}
if (Returns(Param1, Param2)) {
LLVM_DEBUG(llvm::dbgs() << "::: Both parameter returned.\n");
return true;
}
LLVM_DEBUG(llvm::dbgs() << "::: None.\n");
return false;
}
};
// (This function hoists the call to operator() of the wrapper, so we do not
// need to define the previous class at the top of the file.)
static inline bool
isSimilarlyUsedParameter(const SimilarlyUsedParameterPairSuppressor &Suppressor,
const ParmVarDecl *Param1, const ParmVarDecl *Param2) {
return Suppressor(Param1, Param2);
}
static void padStringAtEnd(SmallVectorImpl<char> &Str, std::size_t ToLen) {
while (Str.size() < ToLen)
Str.emplace_back('\0');
}
static void padStringAtBegin(SmallVectorImpl<char> &Str, std::size_t ToLen) {
while (Str.size() < ToLen)
Str.insert(Str.begin(), '\0');
}
static bool isCommonPrefixWithoutSomeCharacters(std::size_t N, StringRef S1,
StringRef S2) {
assert(S1.size() >= N && S2.size() >= N);
StringRef S1Prefix = S1.take_front(S1.size() - N),
S2Prefix = S2.take_front(S2.size() - N);
return S1Prefix == S2Prefix && !S1Prefix.empty();
}
static bool isCommonSuffixWithoutSomeCharacters(std::size_t N, StringRef S1,
StringRef S2) {
assert(S1.size() >= N && S2.size() >= N);
StringRef S1Suffix = S1.take_back(S1.size() - N),
S2Suffix = S2.take_back(S2.size() - N);
return S1Suffix == S2Suffix && !S1Suffix.empty();
}
/// Returns whether the two strings are prefixes or suffixes of each other with
/// at most Threshold characters differing on the non-common end.
static bool prefixSuffixCoverUnderThreshold(std::size_t Threshold,
StringRef Str1, StringRef Str2) {
if (Threshold == 0)
return false;
// Pad the two strings to the longer length.
std::size_t BiggerLength = std::max(Str1.size(), Str2.size());
if (BiggerLength <= Threshold)
// If the length of the strings is still smaller than the threshold, they
// would be covered by an empty prefix/suffix with the rest differing.
// (E.g. "A" and "X" with Threshold = 1 would mean we think they are
// similar and do not warn about them, which is a too eager assumption.)
return false;
SmallString<32> S1PadE{Str1}, S2PadE{Str2};
padStringAtEnd(S1PadE, BiggerLength);
padStringAtEnd(S2PadE, BiggerLength);
if (isCommonPrefixWithoutSomeCharacters(
Threshold, StringRef{S1PadE.begin(), BiggerLength},
StringRef{S2PadE.begin(), BiggerLength}))
return true;
SmallString<32> S1PadB{Str1}, S2PadB{Str2};
padStringAtBegin(S1PadB, BiggerLength);
padStringAtBegin(S2PadB, BiggerLength);
if (isCommonSuffixWithoutSomeCharacters(
Threshold, StringRef{S1PadB.begin(), BiggerLength},
StringRef{S2PadB.begin(), BiggerLength}))
return true;
return false;
}
} // namespace filter
/// Matches functions that have at least the specified amount of parameters.
AST_MATCHER_P(FunctionDecl, parameterCountGE, unsigned, N) {
return Node.getNumParams() >= N;
}
/// Matches *any* overloaded unary and binary operators.
AST_MATCHER(FunctionDecl, isOverloadedUnaryOrBinaryOperator) {
switch (Node.getOverloadedOperator()) {
case OO_None:
case OO_New:
case OO_Delete:
case OO_Array_New:
case OO_Array_Delete:
case OO_Conditional:
case OO_Coawait:
return false;
default:
return Node.getNumParams() <= 2;
}
}
/// Returns the DefaultMinimumLength if the Value of requested minimum length
/// is less than 2. Minimum lengths of 0 or 1 are not accepted.
static inline unsigned clampMinimumLength(const unsigned Value) {
return Value < 2 ? DefaultMinimumLength : Value;
}
// FIXME: Maybe unneeded, getNameForDiagnostic() is expected to change to return
// a crafted location when the node itself is unnamed. (See D84658, D85033.)
/// Returns the diagnostic-friendly name of the node, or empty string.
static SmallString<64> getName(const NamedDecl *ND) {
SmallString<64> Name;
llvm::raw_svector_ostream OS{Name};
ND->getNameForDiagnostic(OS, ND->getASTContext().getPrintingPolicy(), false);
return Name;
}
/// Returns the diagnostic-friendly name of the node, or a constant value.
static SmallString<64> getNameOrUnnamed(const NamedDecl *ND) {
auto Name = getName(ND);
if (Name.empty())
Name = "<unnamed>";
return Name;
}
/// Returns whether a particular Mix between two parameters should have the
/// types involved diagnosed to the user. This is only a flag check.
static inline bool needsToPrintTypeInDiagnostic(const model::Mix &M) {
using namespace model;
return static_cast<bool>(
M.flags() &
(MixFlags::TypeAlias | MixFlags::ReferenceBind | MixFlags::Qualifiers));
}
/// Returns whether a particular Mix between the two parameters should have
/// implicit conversions elaborated.
static inline bool needsToElaborateImplicitConversion(const model::Mix &M) {
return hasFlag(M.flags(), model::MixFlags::ImplicitConversion);
}
namespace {
/// This class formats a conversion sequence into a "Ty1 -> Ty2 -> Ty3" line
/// that can be used in diagnostics.
struct FormattedConversionSequence {
std::string DiagnosticText;
/// The formatted sequence is trivial if it is "Ty1 -> Ty2", but Ty1 and
/// Ty2 are the types that are shown in the code. A trivial diagnostic
/// does not need to be printed.
bool Trivial;
FormattedConversionSequence(const PrintingPolicy &PP,
StringRef StartTypeAsDiagnosed,
const model::ConversionSequence &Conv,
StringRef DestinationTypeAsDiagnosed) {
Trivial = true;
llvm::raw_string_ostream OS{DiagnosticText};
// Print the type name as it is printed in other places in the diagnostic.
OS << '\'' << StartTypeAsDiagnosed << '\'';
std::string LastAddedType = StartTypeAsDiagnosed.str();
std::size_t NumElementsAdded = 1;
// However, the parameter's defined type might not be what the implicit
// conversion started with, e.g. if a typedef is found to convert.
std::string SeqBeginTypeStr = Conv.Begin.getAsString(PP);
std::string SeqEndTypeStr = Conv.End.getAsString(PP);
if (StartTypeAsDiagnosed != SeqBeginTypeStr) {
OS << " (as '" << SeqBeginTypeStr << "')";
LastAddedType = SeqBeginTypeStr;
Trivial = false;
}
auto AddType = [&](StringRef ToAdd) {
if (LastAddedType != ToAdd && ToAdd != SeqEndTypeStr) {
OS << " -> '" << ToAdd << "'";
LastAddedType = ToAdd.str();
++NumElementsAdded;
}
};
for (QualType InvolvedType : Conv.getInvolvedTypesInSequence())
// Print every type that's unique in the sequence into the diagnosis.
AddType(InvolvedType.getAsString(PP));
if (LastAddedType != DestinationTypeAsDiagnosed) {
OS << " -> '" << DestinationTypeAsDiagnosed << "'";
LastAddedType = DestinationTypeAsDiagnosed.str();
++NumElementsAdded;
}
// Same reasoning as with the Begin, e.g. if the converted-to type is a
// typedef, it will not be the same inside the conversion sequence (where
// the model already tore off typedefs) as in the code.
if (DestinationTypeAsDiagnosed != SeqEndTypeStr) {
OS << " (as '" << SeqEndTypeStr << "')";
LastAddedType = SeqEndTypeStr;
Trivial = false;
}
if (Trivial && NumElementsAdded > 2)
// If the thing is still marked trivial but we have more than the
// from and to types added, it should not be trivial, and elaborated
// when printing the diagnostic.
Trivial = false;
}
};
/// Retains the elements called with and returns whether the call is done with
/// a new element.
template <typename E, std::size_t N> class InsertOnce {
llvm::SmallSet<E, N> CalledWith;
public:
bool operator()(E El) { return CalledWith.insert(std::move(El)).second; }
bool calledWith(const E &El) const { return CalledWith.contains(El); }
};
struct SwappedEqualQualTypePair {
QualType LHSType, RHSType;
bool operator==(const SwappedEqualQualTypePair &Other) const {
return (LHSType == Other.LHSType && RHSType == Other.RHSType) ||
(LHSType == Other.RHSType && RHSType == Other.LHSType);
}
bool operator<(const SwappedEqualQualTypePair &Other) const {
return LHSType < Other.LHSType && RHSType < Other.RHSType;
}
};
struct TypeAliasDiagnosticTuple {
QualType LHSType, RHSType, CommonType;
bool operator==(const TypeAliasDiagnosticTuple &Other) const {
return CommonType == Other.CommonType &&
((LHSType == Other.LHSType && RHSType == Other.RHSType) ||
(LHSType == Other.RHSType && RHSType == Other.LHSType));
}
bool operator<(const TypeAliasDiagnosticTuple &Other) const {
return CommonType < Other.CommonType && LHSType < Other.LHSType &&
RHSType < Other.RHSType;
}
};
/// Helper class to only emit a diagnostic related to MixFlags::TypeAlias once.
class UniqueTypeAliasDiagnosticHelper
: public InsertOnce<TypeAliasDiagnosticTuple, 8> {
using Base = InsertOnce<TypeAliasDiagnosticTuple, 8>;
public:
/// Returns whether the diagnostic for LHSType and RHSType which are both
/// referring to CommonType being the same has not been emitted already.
bool operator()(QualType LHSType, QualType RHSType, QualType CommonType) {
if (CommonType.isNull() || CommonType == LHSType || CommonType == RHSType)
return Base::operator()({LHSType, RHSType, {}});
TypeAliasDiagnosticTuple ThreeTuple{LHSType, RHSType, CommonType};
if (!Base::operator()(ThreeTuple))
return false;
bool AlreadySaidLHSAndCommonIsSame = calledWith({LHSType, CommonType, {}});
bool AlreadySaidRHSAndCommonIsSame = calledWith({RHSType, CommonType, {}});
if (AlreadySaidLHSAndCommonIsSame && AlreadySaidRHSAndCommonIsSame) {
// "SomeInt == int" && "SomeOtherInt == int" => "Common(SomeInt,
// SomeOtherInt) == int", no need to diagnose it. Save the 3-tuple only
// for shortcut if it ever appears again.
return false;
}
return true;
}
};
} // namespace
EasilySwappableParametersCheck::EasilySwappableParametersCheck(
StringRef Name, ClangTidyContext *Context)
: ClangTidyCheck(Name, Context),
MinimumLength(clampMinimumLength(
Options.get("MinimumLength", DefaultMinimumLength))),
IgnoredParameterNames(optutils::parseStringList(
Options.get("IgnoredParameterNames", DefaultIgnoredParameterNames))),
IgnoredParameterTypeSuffixes(optutils::parseStringList(
Options.get("IgnoredParameterTypeSuffixes",
DefaultIgnoredParameterTypeSuffixes))),
QualifiersMix(Options.get("QualifiersMix", DefaultQualifiersMix)),
ModelImplicitConversions(Options.get("ModelImplicitConversions",
DefaultModelImplicitConversions)),
SuppressParametersUsedTogether(
Options.get("SuppressParametersUsedTogether",
DefaultSuppressParametersUsedTogether)),
NamePrefixSuffixSilenceDissimilarityTreshold(
Options.get("NamePrefixSuffixSilenceDissimilarityTreshold",
DefaultNamePrefixSuffixSilenceDissimilarityTreshold)) {}
void EasilySwappableParametersCheck::storeOptions(
ClangTidyOptions::OptionMap &Opts) {
Options.store(Opts, "MinimumLength", MinimumLength);
Options.store(Opts, "IgnoredParameterNames",
optutils::serializeStringList(IgnoredParameterNames));
Options.store(Opts, "IgnoredParameterTypeSuffixes",
optutils::serializeStringList(IgnoredParameterTypeSuffixes));
Options.store(Opts, "QualifiersMix", QualifiersMix);
Options.store(Opts, "ModelImplicitConversions", ModelImplicitConversions);
Options.store(Opts, "SuppressParametersUsedTogether",
SuppressParametersUsedTogether);
Options.store(Opts, "NamePrefixSuffixSilenceDissimilarityTreshold",
NamePrefixSuffixSilenceDissimilarityTreshold);
}
void EasilySwappableParametersCheck::registerMatchers(MatchFinder *Finder) {
const auto BaseConstraints = functionDecl(
// Only report for definition nodes, as fixing the issues reported
// requires the user to be able to change code.
isDefinition(), parameterCountGE(MinimumLength),
unless(isOverloadedUnaryOrBinaryOperator()));
Finder->addMatcher(
functionDecl(BaseConstraints,
unless(ast_matchers::isTemplateInstantiation()))
.bind("func"),
this);
Finder->addMatcher(
functionDecl(BaseConstraints, isExplicitTemplateSpecialization())
.bind("func"),
this);
}
void EasilySwappableParametersCheck::check(
const MatchFinder::MatchResult &Result) {
using namespace model;
using namespace filter;
const auto *FD = Result.Nodes.getNodeAs<FunctionDecl>("func");
assert(FD);
const PrintingPolicy &PP = FD->getASTContext().getPrintingPolicy();
std::size_t NumParams = FD->getNumParams();
std::size_t MixableRangeStartIndex = 0;
// Spawn one suppressor and if the user requested, gather information from
// the AST for the parameters' usages.
filter::SimilarlyUsedParameterPairSuppressor UsageBasedSuppressor{
FD, SuppressParametersUsedTogether};
LLVM_DEBUG(llvm::dbgs() << "Begin analysis of " << getName(FD) << " with "
<< NumParams << " parameters...\n");
while (MixableRangeStartIndex < NumParams) {
if (isIgnoredParameter(*this, FD->getParamDecl(MixableRangeStartIndex))) {
LLVM_DEBUG(llvm::dbgs()
<< "Parameter #" << MixableRangeStartIndex << " ignored.\n");
++MixableRangeStartIndex;
continue;
}
MixableParameterRange R = modelMixingRange(
*this, FD, MixableRangeStartIndex, UsageBasedSuppressor);
assert(R.NumParamsChecked > 0 && "Ensure forward progress!");
MixableRangeStartIndex += R.NumParamsChecked;
if (R.NumParamsChecked < MinimumLength) {
LLVM_DEBUG(llvm::dbgs() << "Ignoring range of " << R.NumParamsChecked
<< " lower than limit.\n");
continue;
}
bool NeedsAnyTypeNote = llvm::any_of(R.Mixes, needsToPrintTypeInDiagnostic);
bool HasAnyImplicits =
llvm::any_of(R.Mixes, needsToElaborateImplicitConversion);
const ParmVarDecl *First = R.getFirstParam(), *Last = R.getLastParam();
std::string FirstParamTypeAsWritten = First->getType().getAsString(PP);
{
StringRef DiagText;
if (HasAnyImplicits)
DiagText = "%0 adjacent parameters of %1 of convertible types are "
"easily swapped by mistake";
else if (NeedsAnyTypeNote)
DiagText = "%0 adjacent parameters of %1 of similar type are easily "
"swapped by mistake";
else
DiagText = "%0 adjacent parameters of %1 of similar type ('%2') are "
"easily swapped by mistake";
auto Diag = diag(First->getOuterLocStart(), DiagText)
<< static_cast<unsigned>(R.NumParamsChecked) << FD;
if (!NeedsAnyTypeNote)
Diag << FirstParamTypeAsWritten;
CharSourceRange HighlightRange = CharSourceRange::getTokenRange(
First->getBeginLoc(), Last->getEndLoc());
Diag << HighlightRange;
}
// There is a chance that the previous highlight did not succeed, e.g. when
// the two parameters are on different lines. For clarity, show the user
// the involved variable explicitly.
diag(First->getLocation(), "the first parameter in the range is '%0'",
DiagnosticIDs::Note)
<< getNameOrUnnamed(First)
<< CharSourceRange::getTokenRange(First->getLocation(),
First->getLocation());
diag(Last->getLocation(), "the last parameter in the range is '%0'",
DiagnosticIDs::Note)
<< getNameOrUnnamed(Last)
<< CharSourceRange::getTokenRange(Last->getLocation(),
Last->getLocation());
// Helper classes to silence elaborative diagnostic notes that would be
// too verbose.
UniqueTypeAliasDiagnosticHelper UniqueTypeAlias;
InsertOnce<SwappedEqualQualTypePair, 8> UniqueBindPower;
InsertOnce<SwappedEqualQualTypePair, 8> UniqueImplicitConversion;
for (const model::Mix &M : R.Mixes) {
assert(M.mixable() && "Sentinel or false mix in result.");
if (!needsToPrintTypeInDiagnostic(M) &&
!needsToElaborateImplicitConversion(M))
continue;
// Typedefs might result in the type of the variable needing to be
// emitted to a note diagnostic, so prepare it.
const ParmVarDecl *LVar = M.First;
const ParmVarDecl *RVar = M.Second;
QualType LType = LVar->getType();
QualType RType = RVar->getType();
QualType CommonType = M.commonUnderlyingType();
std::string LTypeStr = LType.getAsString(PP);
std::string RTypeStr = RType.getAsString(PP);
std::string CommonTypeStr = CommonType.getAsString(PP);
if (hasFlag(M.flags(), MixFlags::TypeAlias) &&
UniqueTypeAlias(LType, RType, CommonType)) {
StringRef DiagText;
bool ExplicitlyPrintCommonType = false;
if (LTypeStr == CommonTypeStr || RTypeStr == CommonTypeStr) {
if (hasFlag(M.flags(), MixFlags::Qualifiers))
DiagText = "after resolving type aliases, '%0' and '%1' share a "
"common type";
else
DiagText =
"after resolving type aliases, '%0' and '%1' are the same";
} else if (!CommonType.isNull()) {
DiagText = "after resolving type aliases, the common type of '%0' "
"and '%1' is '%2'";
ExplicitlyPrintCommonType = true;
}
auto Diag =
diag(LVar->getOuterLocStart(), DiagText, DiagnosticIDs::Note)
<< LTypeStr << RTypeStr;
if (ExplicitlyPrintCommonType)
Diag << CommonTypeStr;
}
if ((hasFlag(M.flags(), MixFlags::ReferenceBind) ||
hasFlag(M.flags(), MixFlags::Qualifiers)) &&
UniqueBindPower({LType, RType})) {
StringRef DiagText = "'%0' and '%1' parameters accept and bind the "
"same kind of values";
diag(RVar->getOuterLocStart(), DiagText, DiagnosticIDs::Note)
<< LTypeStr << RTypeStr;
}
if (needsToElaborateImplicitConversion(M) &&
UniqueImplicitConversion({LType, RType})) {
const model::ConversionSequence <R =
M.leftToRightConversionSequence();
const model::ConversionSequence &RTL =
M.rightToLeftConversionSequence();
FormattedConversionSequence LTRFmt{PP, LTypeStr, LTR, RTypeStr};
FormattedConversionSequence RTLFmt{PP, RTypeStr, RTL, LTypeStr};
StringRef DiagText = "'%0' and '%1' may be implicitly converted";
if (!LTRFmt.Trivial || !RTLFmt.Trivial)
DiagText = "'%0' and '%1' may be implicitly converted: %2, %3";
{
auto Diag =
diag(RVar->getOuterLocStart(), DiagText, DiagnosticIDs::Note)
<< LTypeStr << RTypeStr;
if (!LTRFmt.Trivial || !RTLFmt.Trivial)
Diag << LTRFmt.DiagnosticText << RTLFmt.DiagnosticText;
}
StringRef ConversionFunctionDiagText =
"the implicit conversion involves the "
"%select{|converting constructor|conversion operator}0 "
"declared here";
if (const FunctionDecl *LFD = LTR.getUserDefinedConversionFunction())
diag(LFD->getLocation(), ConversionFunctionDiagText,
DiagnosticIDs::Note)
<< static_cast<unsigned>(LTR.UDConvKind)
<< LTR.getUserDefinedConversionHighlight();
if (const FunctionDecl *RFD = RTL.getUserDefinedConversionFunction())
diag(RFD->getLocation(), ConversionFunctionDiagText,
DiagnosticIDs::Note)
<< static_cast<unsigned>(RTL.UDConvKind)
<< RTL.getUserDefinedConversionHighlight();
}
}
}
}
} // namespace clang::tidy::bugprone
|