1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
|
//===--- ExceptionAnalyzer.cpp - clang-tidy -------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ExceptionAnalyzer.h"
namespace clang::tidy::utils {
void ExceptionAnalyzer::ExceptionInfo::registerException(
const Type *ExceptionType) {
assert(ExceptionType != nullptr && "Only valid types are accepted");
Behaviour = State::Throwing;
ThrownExceptions.insert(ExceptionType);
}
void ExceptionAnalyzer::ExceptionInfo::registerExceptions(
const Throwables &Exceptions) {
if (Exceptions.size() == 0)
return;
Behaviour = State::Throwing;
ThrownExceptions.insert(Exceptions.begin(), Exceptions.end());
}
ExceptionAnalyzer::ExceptionInfo &ExceptionAnalyzer::ExceptionInfo::merge(
const ExceptionAnalyzer::ExceptionInfo &Other) {
// Only the following two cases require an update to the local
// 'Behaviour'. If the local entity is already throwing there will be no
// change and if the other entity is throwing the merged entity will throw
// as well.
// If one of both entities is 'Unknown' and the other one does not throw
// the merged entity is 'Unknown' as well.
if (Other.Behaviour == State::Throwing)
Behaviour = State::Throwing;
else if (Other.Behaviour == State::Unknown && Behaviour == State::NotThrowing)
Behaviour = State::Unknown;
ContainsUnknown = ContainsUnknown || Other.ContainsUnknown;
ThrownExceptions.insert(Other.ThrownExceptions.begin(),
Other.ThrownExceptions.end());
return *this;
}
// FIXME: This could be ported to clang later.
namespace {
bool isUnambiguousPublicBaseClass(const Type *DerivedType,
const Type *BaseType) {
const auto *DerivedClass =
DerivedType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl();
const auto *BaseClass =
BaseType->getCanonicalTypeUnqualified()->getAsCXXRecordDecl();
if (!DerivedClass || !BaseClass)
return false;
CXXBasePaths Paths;
Paths.setOrigin(DerivedClass);
bool IsPublicBaseClass = false;
DerivedClass->lookupInBases(
[&BaseClass, &IsPublicBaseClass](const CXXBaseSpecifier *BS,
CXXBasePath &) {
if (BS->getType()
->getCanonicalTypeUnqualified()
->getAsCXXRecordDecl() == BaseClass &&
BS->getAccessSpecifier() == AS_public) {
IsPublicBaseClass = true;
return true;
}
return false;
},
Paths);
return !Paths.isAmbiguous(BaseType->getCanonicalTypeUnqualified()) &&
IsPublicBaseClass;
}
inline bool isPointerOrPointerToMember(const Type *T) {
return T->isPointerType() || T->isMemberPointerType();
}
std::optional<QualType> getPointeeOrArrayElementQualType(QualType T) {
if (T->isAnyPointerType() || T->isMemberPointerType())
return T->getPointeeType();
if (T->isArrayType())
return T->getAsArrayTypeUnsafe()->getElementType();
return std::nullopt;
}
bool isBaseOf(const Type *DerivedType, const Type *BaseType) {
const auto *DerivedClass = DerivedType->getAsCXXRecordDecl();
const auto *BaseClass = BaseType->getAsCXXRecordDecl();
if (!DerivedClass || !BaseClass)
return false;
return !DerivedClass->forallBases(
[BaseClass](const CXXRecordDecl *Cur) { return Cur != BaseClass; });
}
// Check if T1 is more or Equally qualified than T2.
bool moreOrEquallyQualified(QualType T1, QualType T2) {
return T1.getQualifiers().isStrictSupersetOf(T2.getQualifiers()) ||
T1.getQualifiers() == T2.getQualifiers();
}
bool isStandardPointerConvertible(QualType From, QualType To) {
assert((From->isPointerType() || From->isMemberPointerType()) &&
(To->isPointerType() || To->isMemberPointerType()) &&
"Pointer conversion should be performed on pointer types only.");
if (!moreOrEquallyQualified(To->getPointeeType(), From->getPointeeType()))
return false;
// (1)
// A null pointer constant can be converted to a pointer type ...
// The conversion of a null pointer constant to a pointer to cv-qualified type
// is a single conversion, and not the sequence of a pointer conversion
// followed by a qualification conversion. A null pointer constant of integral
// type can be converted to a prvalue of type std::nullptr_t
if (To->isPointerType() && From->isNullPtrType())
return true;
// (2)
// A prvalue of type “pointer to cv T”, where T is an object type, can be
// converted to a prvalue of type “pointer to cv void”.
if (To->isVoidPointerType() && From->isObjectPointerType())
return true;
// (3)
// A prvalue of type “pointer to cv D”, where D is a complete class type, can
// be converted to a prvalue of type “pointer to cv B”, where B is a base
// class of D. If B is an inaccessible or ambiguous base class of D, a program
// that necessitates this conversion is ill-formed.
if (const auto *RD = From->getPointeeCXXRecordDecl()) {
if (RD->isCompleteDefinition() &&
isBaseOf(From->getPointeeType().getTypePtr(),
To->getPointeeType().getTypePtr())) {
return true;
}
}
return false;
}
bool isFunctionPointerConvertible(QualType From, QualType To) {
if (!From->isFunctionPointerType() && !From->isFunctionType() &&
!From->isMemberFunctionPointerType())
return false;
if (!To->isFunctionPointerType() && !To->isMemberFunctionPointerType())
return false;
if (To->isFunctionPointerType()) {
if (From->isFunctionPointerType())
return To->getPointeeType() == From->getPointeeType();
if (From->isFunctionType())
return To->getPointeeType() == From;
return false;
}
if (To->isMemberFunctionPointerType()) {
if (!From->isMemberFunctionPointerType())
return false;
const auto *FromMember = cast<MemberPointerType>(From);
const auto *ToMember = cast<MemberPointerType>(To);
// Note: converting Derived::* to Base::* is a different kind of conversion,
// called Pointer-to-member conversion.
return FromMember->getClass() == ToMember->getClass() &&
FromMember->getPointeeType() == ToMember->getPointeeType();
}
return false;
}
// Checks if From is qualification convertible to To based on the current
// LangOpts. If From is any array, we perform the array to pointer conversion
// first. The function only performs checks based on C++ rules, which can differ
// from the C rules.
//
// The function should only be called in C++ mode.
bool isQualificationConvertiblePointer(QualType From, QualType To,
LangOptions LangOpts) {
// [N4659 7.5 (1)]
// A cv-decomposition of a type T is a sequence of cv_i and P_i such that T is
// cv_0 P_0 cv_1 P_1 ... cv_n−1 P_n−1 cv_n U” for n > 0,
// where each cv_i is a set of cv-qualifiers, and each P_i is “pointer to”,
// “pointer to member of class C_i of type”, “array of N_i”, or
// “array of unknown bound of”.
//
// If P_i designates an array, the cv-qualifiers cv_i+1 on the element type
// are also taken as the cv-qualifiers cvi of the array.
//
// The n-tuple of cv-qualifiers after the first one in the longest
// cv-decomposition of T, that is, cv_1, cv_2, ... , cv_n, is called the
// cv-qualification signature of T.
auto isValidP_i = [](QualType P) {
return P->isPointerType() || P->isMemberPointerType() ||
P->isConstantArrayType() || P->isIncompleteArrayType();
};
auto isSameP_i = [](QualType P1, QualType P2) {
if (P1->isPointerType())
return P2->isPointerType();
if (P1->isMemberPointerType())
return P2->isMemberPointerType() &&
P1->getAs<MemberPointerType>()->getClass() ==
P2->getAs<MemberPointerType>()->getClass();
if (P1->isConstantArrayType())
return P2->isConstantArrayType() &&
cast<ConstantArrayType>(P1)->getSize() ==
cast<ConstantArrayType>(P2)->getSize();
if (P1->isIncompleteArrayType())
return P2->isIncompleteArrayType();
return false;
};
// (2)
// Two types From and To are similar if they have cv-decompositions with the
// same n such that corresponding P_i components are the same [(added by
// N4849 7.3.5) or one is “array of N_i” and the other is “array of unknown
// bound of”], and the types denoted by U are the same.
//
// (3)
// A prvalue expression of type From can be converted to type To if the
// following conditions are satisfied:
// - From and To are similar
// - For every i > 0, if const is in cv_i of From then const is in cv_i of
// To, and similarly for volatile.
// - [(derived from addition by N4849 7.3.5) If P_i of From is “array of
// unknown bound of”, P_i of To is “array of unknown bound of”.]
// - If the cv_i of From and cv_i of To are different, then const is in every
// cv_k of To for 0 < k < i.
int I = 0;
bool ConstUntilI = true;
auto SatisfiesCVRules = [&I, &ConstUntilI](const QualType &From,
const QualType &To) {
if (I > 1) {
if (From.getQualifiers() != To.getQualifiers() && !ConstUntilI)
return false;
}
if (I > 0) {
if (From.isConstQualified() && !To.isConstQualified())
return false;
if (From.isVolatileQualified() && !To.isVolatileQualified())
return false;
ConstUntilI = To.isConstQualified();
}
return true;
};
while (isValidP_i(From) && isValidP_i(To)) {
// Remove every sugar.
From = From.getCanonicalType();
To = To.getCanonicalType();
if (!SatisfiesCVRules(From, To))
return false;
if (!isSameP_i(From, To)) {
if (LangOpts.CPlusPlus20) {
if (From->isConstantArrayType() && !To->isIncompleteArrayType())
return false;
if (From->isIncompleteArrayType() && !To->isIncompleteArrayType())
return false;
} else {
return false;
}
}
++I;
std::optional<QualType> FromPointeeOrElem =
getPointeeOrArrayElementQualType(From);
std::optional<QualType> ToPointeeOrElem =
getPointeeOrArrayElementQualType(To);
assert(FromPointeeOrElem &&
"From pointer or array has no pointee or element!");
assert(ToPointeeOrElem && "To pointer or array has no pointee or element!");
From = *FromPointeeOrElem;
To = *ToPointeeOrElem;
}
// In this case the length (n) of From and To are not the same.
if (isValidP_i(From) || isValidP_i(To))
return false;
// We hit U.
if (!SatisfiesCVRules(From, To))
return false;
return From.getTypePtr() == To.getTypePtr();
}
} // namespace
static bool canThrow(const FunctionDecl *Func) {
const auto *FunProto = Func->getType()->getAs<FunctionProtoType>();
if (!FunProto)
return true;
switch (FunProto->canThrow()) {
case CT_Cannot:
return false;
case CT_Dependent: {
const Expr *NoexceptExpr = FunProto->getNoexceptExpr();
if (!NoexceptExpr)
return true; // no noexept - can throw
if (NoexceptExpr->isValueDependent())
return true; // depend on template - some instance can throw
bool Result = false;
if (!NoexceptExpr->EvaluateAsBooleanCondition(Result, Func->getASTContext(),
/*InConstantContext=*/true))
return true; // complex X condition in noexcept(X), cannot validate,
// assume that may throw
return !Result; // noexcept(false) - can throw
}
default:
return true;
};
}
bool ExceptionAnalyzer::ExceptionInfo::filterByCatch(
const Type *HandlerTy, const ASTContext &Context) {
llvm::SmallVector<const Type *, 8> TypesToDelete;
for (const Type *ExceptionTy : ThrownExceptions) {
CanQualType ExceptionCanTy = ExceptionTy->getCanonicalTypeUnqualified();
CanQualType HandlerCanTy = HandlerTy->getCanonicalTypeUnqualified();
// The handler is of type cv T or cv T& and E and T are the same type
// (ignoring the top-level cv-qualifiers) ...
if (ExceptionCanTy == HandlerCanTy) {
TypesToDelete.push_back(ExceptionTy);
}
// The handler is of type cv T or cv T& and T is an unambiguous public base
// class of E ...
else if (isUnambiguousPublicBaseClass(ExceptionCanTy->getTypePtr(),
HandlerCanTy->getTypePtr())) {
TypesToDelete.push_back(ExceptionTy);
}
if (HandlerCanTy->getTypeClass() == Type::RValueReference ||
(HandlerCanTy->getTypeClass() == Type::LValueReference &&
!HandlerCanTy->getTypePtr()->getPointeeType().isConstQualified()))
continue;
// The handler is of type cv T or const T& where T is a pointer or
// pointer-to-member type and E is a pointer or pointer-to-member type that
// can be converted to T by one or more of ...
if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) &&
isPointerOrPointerToMember(ExceptionCanTy->getTypePtr())) {
// A standard pointer conversion not involving conversions to pointers to
// private or protected or ambiguous classes ...
if (isStandardPointerConvertible(ExceptionCanTy, HandlerCanTy) &&
isUnambiguousPublicBaseClass(
ExceptionCanTy->getTypePtr()->getPointeeType().getTypePtr(),
HandlerCanTy->getTypePtr()->getPointeeType().getTypePtr())) {
TypesToDelete.push_back(ExceptionTy);
}
// A function pointer conversion ...
else if (isFunctionPointerConvertible(ExceptionCanTy, HandlerCanTy)) {
TypesToDelete.push_back(ExceptionTy);
}
// A a qualification conversion ...
else if (isQualificationConvertiblePointer(ExceptionCanTy, HandlerCanTy,
Context.getLangOpts())) {
TypesToDelete.push_back(ExceptionTy);
}
}
// The handler is of type cv T or const T& where T is a pointer or
// pointer-to-member type and E is std::nullptr_t.
else if (isPointerOrPointerToMember(HandlerCanTy->getTypePtr()) &&
ExceptionCanTy->isNullPtrType()) {
TypesToDelete.push_back(ExceptionTy);
}
}
for (const Type *T : TypesToDelete)
ThrownExceptions.erase(T);
reevaluateBehaviour();
return TypesToDelete.size() > 0;
}
ExceptionAnalyzer::ExceptionInfo &
ExceptionAnalyzer::ExceptionInfo::filterIgnoredExceptions(
const llvm::StringSet<> &IgnoredTypes, bool IgnoreBadAlloc) {
llvm::SmallVector<const Type *, 8> TypesToDelete;
// Note: Using a 'SmallSet' with 'llvm::remove_if()' is not possible.
// Therefore this slightly hacky implementation is required.
for (const Type *T : ThrownExceptions) {
if (const auto *TD = T->getAsTagDecl()) {
if (TD->getDeclName().isIdentifier()) {
if ((IgnoreBadAlloc &&
(TD->getName() == "bad_alloc" && TD->isInStdNamespace())) ||
(IgnoredTypes.count(TD->getName()) > 0))
TypesToDelete.push_back(T);
}
}
}
for (const Type *T : TypesToDelete)
ThrownExceptions.erase(T);
reevaluateBehaviour();
return *this;
}
void ExceptionAnalyzer::ExceptionInfo::clear() {
Behaviour = State::NotThrowing;
ContainsUnknown = false;
ThrownExceptions.clear();
}
void ExceptionAnalyzer::ExceptionInfo::reevaluateBehaviour() {
if (ThrownExceptions.size() == 0)
if (ContainsUnknown)
Behaviour = State::Unknown;
else
Behaviour = State::NotThrowing;
else
Behaviour = State::Throwing;
}
ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException(
const FunctionDecl *Func, const ExceptionInfo::Throwables &Caught,
llvm::SmallSet<const FunctionDecl *, 32> &CallStack) {
if (!Func || CallStack.count(Func) || (!CallStack.empty() && !canThrow(Func)))
return ExceptionInfo::createNonThrowing();
if (const Stmt *Body = Func->getBody()) {
CallStack.insert(Func);
ExceptionInfo Result = throwsException(Body, Caught, CallStack);
// For a constructor, we also have to check the initializers.
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Func)) {
for (const CXXCtorInitializer *Init : Ctor->inits()) {
ExceptionInfo Excs =
throwsException(Init->getInit(), Caught, CallStack);
Result.merge(Excs);
}
}
CallStack.erase(Func);
return Result;
}
auto Result = ExceptionInfo::createUnknown();
if (const auto *FPT = Func->getType()->getAs<FunctionProtoType>()) {
for (const QualType &Ex : FPT->exceptions())
Result.registerException(Ex.getTypePtr());
}
return Result;
}
/// Analyzes a single statement on it's throwing behaviour. This is in principle
/// possible except some 'Unknown' functions are called.
ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::throwsException(
const Stmt *St, const ExceptionInfo::Throwables &Caught,
llvm::SmallSet<const FunctionDecl *, 32> &CallStack) {
auto Results = ExceptionInfo::createNonThrowing();
if (!St)
return Results;
if (const auto *Throw = dyn_cast<CXXThrowExpr>(St)) {
if (const auto *ThrownExpr = Throw->getSubExpr()) {
const auto *ThrownType =
ThrownExpr->getType()->getUnqualifiedDesugaredType();
if (ThrownType->isReferenceType())
ThrownType = ThrownType->castAs<ReferenceType>()
->getPointeeType()
->getUnqualifiedDesugaredType();
Results.registerException(
ThrownExpr->getType()->getUnqualifiedDesugaredType());
} else
// A rethrow of a caught exception happens which makes it possible
// to throw all exception that are caught in the 'catch' clause of
// the parent try-catch block.
Results.registerExceptions(Caught);
} else if (const auto *Try = dyn_cast<CXXTryStmt>(St)) {
ExceptionInfo Uncaught =
throwsException(Try->getTryBlock(), Caught, CallStack);
for (unsigned I = 0; I < Try->getNumHandlers(); ++I) {
const CXXCatchStmt *Catch = Try->getHandler(I);
// Everything is catched through 'catch(...)'.
if (!Catch->getExceptionDecl()) {
ExceptionInfo Rethrown = throwsException(
Catch->getHandlerBlock(), Uncaught.getExceptionTypes(), CallStack);
Results.merge(Rethrown);
Uncaught.clear();
} else {
const auto *CaughtType =
Catch->getCaughtType()->getUnqualifiedDesugaredType();
if (CaughtType->isReferenceType()) {
CaughtType = CaughtType->castAs<ReferenceType>()
->getPointeeType()
->getUnqualifiedDesugaredType();
}
// If the caught exception will catch multiple previously potential
// thrown types (because it's sensitive to inheritance) the throwing
// situation changes. First of all filter the exception types and
// analyze if the baseclass-exception is rethrown.
if (Uncaught.filterByCatch(
CaughtType, Catch->getExceptionDecl()->getASTContext())) {
ExceptionInfo::Throwables CaughtExceptions;
CaughtExceptions.insert(CaughtType);
ExceptionInfo Rethrown = throwsException(Catch->getHandlerBlock(),
CaughtExceptions, CallStack);
Results.merge(Rethrown);
}
}
}
Results.merge(Uncaught);
} else if (const auto *Call = dyn_cast<CallExpr>(St)) {
if (const FunctionDecl *Func = Call->getDirectCallee()) {
ExceptionInfo Excs = throwsException(Func, Caught, CallStack);
Results.merge(Excs);
}
} else if (const auto *Construct = dyn_cast<CXXConstructExpr>(St)) {
ExceptionInfo Excs =
throwsException(Construct->getConstructor(), Caught, CallStack);
Results.merge(Excs);
} else if (const auto *DefaultInit = dyn_cast<CXXDefaultInitExpr>(St)) {
ExceptionInfo Excs =
throwsException(DefaultInit->getExpr(), Caught, CallStack);
Results.merge(Excs);
} else if (const auto *Coro = dyn_cast<CoroutineBodyStmt>(St)) {
for (const Stmt *Child : Coro->childrenExclBody()) {
if (Child != Coro->getExceptionHandler()) {
ExceptionInfo Excs = throwsException(Child, Caught, CallStack);
Results.merge(Excs);
}
}
ExceptionInfo Excs = throwsException(Coro->getBody(), Caught, CallStack);
Results.merge(throwsException(Coro->getExceptionHandler(),
Excs.getExceptionTypes(), CallStack));
for (const Type *Throwable : Excs.getExceptionTypes()) {
if (const auto ThrowableRec = Throwable->getAsCXXRecordDecl()) {
ExceptionInfo DestructorExcs =
throwsException(ThrowableRec->getDestructor(), Caught, CallStack);
Results.merge(DestructorExcs);
}
}
} else {
for (const Stmt *Child : St->children()) {
ExceptionInfo Excs = throwsException(Child, Caught, CallStack);
Results.merge(Excs);
}
}
return Results;
}
ExceptionAnalyzer::ExceptionInfo
ExceptionAnalyzer::analyzeImpl(const FunctionDecl *Func) {
ExceptionInfo ExceptionList;
// Check if the function has already been analyzed and reuse that result.
const auto CacheEntry = FunctionCache.find(Func);
if (CacheEntry == FunctionCache.end()) {
llvm::SmallSet<const FunctionDecl *, 32> CallStack;
ExceptionList =
throwsException(Func, ExceptionInfo::Throwables(), CallStack);
// Cache the result of the analysis. This is done prior to filtering
// because it is best to keep as much information as possible.
// The results here might be relevant to different analysis passes
// with different needs as well.
FunctionCache.try_emplace(Func, ExceptionList);
} else
ExceptionList = CacheEntry->getSecond();
return ExceptionList;
}
ExceptionAnalyzer::ExceptionInfo
ExceptionAnalyzer::analyzeImpl(const Stmt *Stmt) {
llvm::SmallSet<const FunctionDecl *, 32> CallStack;
return throwsException(Stmt, ExceptionInfo::Throwables(), CallStack);
}
template <typename T>
ExceptionAnalyzer::ExceptionInfo
ExceptionAnalyzer::analyzeDispatch(const T *Node) {
ExceptionInfo ExceptionList = analyzeImpl(Node);
if (ExceptionList.getBehaviour() == State::NotThrowing ||
ExceptionList.getBehaviour() == State::Unknown)
return ExceptionList;
// Remove all ignored exceptions from the list of exceptions that can be
// thrown.
ExceptionList.filterIgnoredExceptions(IgnoredExceptions, IgnoreBadAlloc);
return ExceptionList;
}
ExceptionAnalyzer::ExceptionInfo
ExceptionAnalyzer::analyze(const FunctionDecl *Func) {
return analyzeDispatch(Func);
}
ExceptionAnalyzer::ExceptionInfo ExceptionAnalyzer::analyze(const Stmt *Stmt) {
return analyzeDispatch(Stmt);
}
} // namespace clang::tidy::utils
|