1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
//===--- ByteCodeEmitter.cpp - Instruction emitter for the VM ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ByteCodeEmitter.h"
#include "Context.h"
#include "Floating.h"
#include "Opcode.h"
#include "Program.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/DeclCXX.h"
#include <type_traits>
using namespace clang;
using namespace clang::interp;
using APSInt = llvm::APSInt;
using Error = llvm::Error;
Expected<Function *>
ByteCodeEmitter::compileFunc(const FunctionDecl *FuncDecl) {
// Set up argument indices.
unsigned ParamOffset = 0;
SmallVector<PrimType, 8> ParamTypes;
SmallVector<unsigned, 8> ParamOffsets;
llvm::DenseMap<unsigned, Function::ParamDescriptor> ParamDescriptors;
// If the return is not a primitive, a pointer to the storage where the
// value is initialized in is passed as the first argument. See 'RVO'
// elsewhere in the code.
QualType Ty = FuncDecl->getReturnType();
bool HasRVO = false;
if (!Ty->isVoidType() && !Ctx.classify(Ty)) {
HasRVO = true;
ParamTypes.push_back(PT_Ptr);
ParamOffsets.push_back(ParamOffset);
ParamOffset += align(primSize(PT_Ptr));
}
// If the function decl is a member decl, the next parameter is
// the 'this' pointer. This parameter is pop()ed from the
// InterpStack when calling the function.
bool HasThisPointer = false;
if (const auto *MD = dyn_cast<CXXMethodDecl>(FuncDecl)) {
if (MD->isInstance()) {
HasThisPointer = true;
ParamTypes.push_back(PT_Ptr);
ParamOffsets.push_back(ParamOffset);
ParamOffset += align(primSize(PT_Ptr));
}
// Set up lambda capture to closure record field mapping.
if (isLambdaCallOperator(MD)) {
const Record *R = P.getOrCreateRecord(MD->getParent());
llvm::DenseMap<const ValueDecl *, FieldDecl *> LC;
FieldDecl *LTC;
MD->getParent()->getCaptureFields(LC, LTC);
for (auto Cap : LC) {
unsigned Offset = R->getField(Cap.second)->Offset;
this->LambdaCaptures[Cap.first] = {
Offset, Cap.second->getType()->isReferenceType()};
}
// FIXME: LambdaThisCapture
(void)LTC;
}
}
// Assign descriptors to all parameters.
// Composite objects are lowered to pointers.
for (const ParmVarDecl *PD : FuncDecl->parameters()) {
PrimType Ty = Ctx.classify(PD->getType()).value_or(PT_Ptr);
Descriptor *Desc = P.createDescriptor(PD, Ty);
ParamDescriptors.insert({ParamOffset, {Ty, Desc}});
Params.insert({PD, ParamOffset});
ParamOffsets.push_back(ParamOffset);
ParamOffset += align(primSize(Ty));
ParamTypes.push_back(Ty);
}
// Create a handle over the emitted code.
Function *Func = P.getFunction(FuncDecl);
if (!Func)
Func = P.createFunction(FuncDecl, ParamOffset, std::move(ParamTypes),
std::move(ParamDescriptors),
std::move(ParamOffsets), HasThisPointer, HasRVO);
assert(Func);
// For not-yet-defined functions, we only create a Function instance and
// compile their body later.
if (!FuncDecl->isDefined())
return Func;
// Compile the function body.
if (!FuncDecl->isConstexpr() || !visitFunc(FuncDecl)) {
// Return a dummy function if compilation failed.
if (BailLocation)
return llvm::make_error<ByteCodeGenError>(*BailLocation);
else {
Func->setIsFullyCompiled(true);
return Func;
}
} else {
// Create scopes from descriptors.
llvm::SmallVector<Scope, 2> Scopes;
for (auto &DS : Descriptors) {
Scopes.emplace_back(std::move(DS));
}
// Set the function's code.
Func->setCode(NextLocalOffset, std::move(Code), std::move(SrcMap),
std::move(Scopes), FuncDecl->hasBody());
Func->setIsFullyCompiled(true);
return Func;
}
}
Scope::Local ByteCodeEmitter::createLocal(Descriptor *D) {
NextLocalOffset += sizeof(Block);
unsigned Location = NextLocalOffset;
NextLocalOffset += align(D->getAllocSize());
return {Location, D};
}
void ByteCodeEmitter::emitLabel(LabelTy Label) {
const size_t Target = Code.size();
LabelOffsets.insert({Label, Target});
if (auto It = LabelRelocs.find(Label);
It != LabelRelocs.end()) {
for (unsigned Reloc : It->second) {
using namespace llvm::support;
// Rewrite the operand of all jumps to this label.
void *Location = Code.data() + Reloc - align(sizeof(int32_t));
assert(aligned(Location));
const int32_t Offset = Target - static_cast<int64_t>(Reloc);
endian::write<int32_t, endianness::native, 1>(Location, Offset);
}
LabelRelocs.erase(It);
}
}
int32_t ByteCodeEmitter::getOffset(LabelTy Label) {
// Compute the PC offset which the jump is relative to.
const int64_t Position =
Code.size() + align(sizeof(Opcode)) + align(sizeof(int32_t));
assert(aligned(Position));
// If target is known, compute jump offset.
if (auto It = LabelOffsets.find(Label);
It != LabelOffsets.end())
return It->second - Position;
// Otherwise, record relocation and return dummy offset.
LabelRelocs[Label].push_back(Position);
return 0ull;
}
bool ByteCodeEmitter::bail(const SourceLocation &Loc) {
if (!BailLocation)
BailLocation = Loc;
return false;
}
/// Helper to write bytecode and bail out if 32-bit offsets become invalid.
/// Pointers will be automatically marshalled as 32-bit IDs.
template <typename T>
static void emit(Program &P, std::vector<std::byte> &Code, const T &Val,
bool &Success) {
size_t Size;
if constexpr (std::is_pointer_v<T>)
Size = sizeof(uint32_t);
else
Size = sizeof(T);
if (Code.size() + Size > std::numeric_limits<unsigned>::max()) {
Success = false;
return;
}
// Access must be aligned!
size_t ValPos = align(Code.size());
Size = align(Size);
assert(aligned(ValPos + Size));
Code.resize(ValPos + Size);
if constexpr (!std::is_pointer_v<T>) {
new (Code.data() + ValPos) T(Val);
} else {
uint32_t ID = P.getOrCreateNativePointer(Val);
new (Code.data() + ValPos) uint32_t(ID);
}
}
template <typename... Tys>
bool ByteCodeEmitter::emitOp(Opcode Op, const Tys &... Args, const SourceInfo &SI) {
bool Success = true;
// The opcode is followed by arguments. The source info is
// attached to the address after the opcode.
emit(P, Code, Op, Success);
if (SI)
SrcMap.emplace_back(Code.size(), SI);
// The initializer list forces the expression to be evaluated
// for each argument in the variadic template, in order.
(void)std::initializer_list<int>{(emit(P, Code, Args, Success), 0)...};
return Success;
}
bool ByteCodeEmitter::jumpTrue(const LabelTy &Label) {
return emitJt(getOffset(Label), SourceInfo{});
}
bool ByteCodeEmitter::jumpFalse(const LabelTy &Label) {
return emitJf(getOffset(Label), SourceInfo{});
}
bool ByteCodeEmitter::jump(const LabelTy &Label) {
return emitJmp(getOffset(Label), SourceInfo{});
}
bool ByteCodeEmitter::fallthrough(const LabelTy &Label) {
emitLabel(Label);
return true;
}
//===----------------------------------------------------------------------===//
// Opcode emitters
//===----------------------------------------------------------------------===//
#define GET_LINK_IMPL
#include "Opcodes.inc"
#undef GET_LINK_IMPL
|