1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
|
//===-- clang-linker-wrapper/ClangLinkerWrapper.cpp - wrapper over linker-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===---------------------------------------------------------------------===//
//
// This tool works as a wrapper over a linking job. This tool is used to create
// linked device images for offloading. It scans the linker's input for embedded
// device offloading data stored in sections `.llvm.offloading` and extracts it
// as a temporary file. The extracted device files will then be passed to a
// device linking job to create a final device image.
//
//===---------------------------------------------------------------------===//
#include "OffloadWrapper.h"
#include "clang/Basic/Version.h"
#include "llvm/BinaryFormat/Magic.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/CodeGen/CommandFlags.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/Module.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/LTO/LTO.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/Archive.h"
#include "llvm/Object/ArchiveWriter.h"
#include "llvm/Object/Binary.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Object/OffloadBinary.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Option/OptTable.h"
#include "llvm/Option/Option.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/WithColor.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/TargetParser/Host.h"
#include <atomic>
#include <optional>
using namespace llvm;
using namespace llvm::opt;
using namespace llvm::object;
/// Path of the current binary.
static const char *LinkerExecutable;
/// Ssave intermediary results.
static bool SaveTemps = false;
/// Print arguments without executing.
static bool DryRun = false;
/// Print verbose output.
static bool Verbose = false;
/// Filename of the executable being created.
static StringRef ExecutableName;
/// Binary path for the CUDA installation.
static std::string CudaBinaryPath;
/// Mutex lock to protect writes to shared TempFiles in parallel.
static std::mutex TempFilesMutex;
/// Temporary files created by the linker wrapper.
static std::list<SmallString<128>> TempFiles;
/// Codegen flags for LTO backend.
static codegen::RegisterCodeGenFlags CodeGenFlags;
/// Global flag to indicate that the LTO pipeline threw an error.
static std::atomic<bool> LTOError;
using OffloadingImage = OffloadBinary::OffloadingImage;
namespace llvm {
// Provide DenseMapInfo so that OffloadKind can be used in a DenseMap.
template <> struct DenseMapInfo<OffloadKind> {
static inline OffloadKind getEmptyKey() { return OFK_LAST; }
static inline OffloadKind getTombstoneKey() {
return static_cast<OffloadKind>(OFK_LAST + 1);
}
static unsigned getHashValue(const OffloadKind &Val) { return Val; }
static bool isEqual(const OffloadKind &LHS, const OffloadKind &RHS) {
return LHS == RHS;
}
};
} // namespace llvm
namespace {
using std::error_code;
/// Must not overlap with llvm::opt::DriverFlag.
enum WrapperFlags {
WrapperOnlyOption = (1 << 4), // Options only used by the linker wrapper.
DeviceOnlyOption = (1 << 5), // Options only used for device linking.
};
enum ID {
OPT_INVALID = 0, // This is not an option ID.
#define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES) \
OPT_##ID,
#include "LinkerWrapperOpts.inc"
LastOption
#undef OPTION
};
#define PREFIX(NAME, VALUE) \
static constexpr StringLiteral NAME##_init[] = VALUE; \
static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \
std::size(NAME##_init) - 1);
#include "LinkerWrapperOpts.inc"
#undef PREFIX
static constexpr OptTable::Info InfoTable[] = {
#define OPTION(PREFIX, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES) \
{PREFIX, NAME, HELPTEXT, METAVAR, OPT_##ID, Option::KIND##Class, \
PARAM, FLAGS, OPT_##GROUP, OPT_##ALIAS, ALIASARGS, VALUES},
#include "LinkerWrapperOpts.inc"
#undef OPTION
};
class WrapperOptTable : public opt::GenericOptTable {
public:
WrapperOptTable() : opt::GenericOptTable(InfoTable) {}
};
const OptTable &getOptTable() {
static const WrapperOptTable *Table = []() {
auto Result = std::make_unique<WrapperOptTable>();
return Result.release();
}();
return *Table;
}
void printCommands(ArrayRef<StringRef> CmdArgs) {
if (CmdArgs.empty())
return;
llvm::errs() << " \"" << CmdArgs.front() << "\" ";
for (auto IC = std::next(CmdArgs.begin()), IE = CmdArgs.end(); IC != IE; ++IC)
llvm::errs() << *IC << (std::next(IC) != IE ? " " : "\n");
}
[[noreturn]] void reportError(Error E) {
outs().flush();
logAllUnhandledErrors(std::move(E),
WithColor::error(errs(), LinkerExecutable));
exit(EXIT_FAILURE);
}
/// Create an extra user-specified \p OffloadFile.
/// TODO: We should find a way to wrap these as libraries instead.
Expected<OffloadFile> getInputBitcodeLibrary(StringRef Input) {
auto [Device, Path] = StringRef(Input).split('=');
auto [String, Arch] = Device.rsplit('-');
auto [Kind, Triple] = String.split('-');
llvm::ErrorOr<std::unique_ptr<MemoryBuffer>> ImageOrError =
llvm::MemoryBuffer::getFileOrSTDIN(Path);
if (std::error_code EC = ImageOrError.getError())
return createFileError(Path, EC);
OffloadingImage Image{};
Image.TheImageKind = IMG_Bitcode;
Image.TheOffloadKind = getOffloadKind(Kind);
Image.StringData["triple"] = Triple;
Image.StringData["arch"] = Arch;
Image.Image = std::move(*ImageOrError);
std::unique_ptr<MemoryBuffer> Binary = OffloadBinary::write(Image);
auto NewBinaryOrErr = OffloadBinary::create(*Binary);
if (!NewBinaryOrErr)
return NewBinaryOrErr.takeError();
return OffloadFile(std::move(*NewBinaryOrErr), std::move(Binary));
}
std::string getMainExecutable(const char *Name) {
void *Ptr = (void *)(intptr_t)&getMainExecutable;
auto COWPath = sys::fs::getMainExecutable(Name, Ptr);
return sys::path::parent_path(COWPath).str();
}
/// Get a temporary filename suitable for output.
Expected<StringRef> createOutputFile(const Twine &Prefix, StringRef Extension) {
std::scoped_lock<decltype(TempFilesMutex)> Lock(TempFilesMutex);
SmallString<128> OutputFile;
if (SaveTemps) {
(Prefix + "." + Extension).toNullTerminatedStringRef(OutputFile);
} else {
if (std::error_code EC =
sys::fs::createTemporaryFile(Prefix, Extension, OutputFile))
return createFileError(OutputFile, EC);
}
TempFiles.emplace_back(std::move(OutputFile));
return TempFiles.back();
}
/// Execute the command \p ExecutablePath with the arguments \p Args.
Error executeCommands(StringRef ExecutablePath, ArrayRef<StringRef> Args) {
if (Verbose || DryRun)
printCommands(Args);
if (!DryRun)
if (sys::ExecuteAndWait(ExecutablePath, Args))
return createStringError(inconvertibleErrorCode(),
"'" + sys::path::filename(ExecutablePath) + "'" +
" failed");
return Error::success();
}
Expected<std::string> findProgram(StringRef Name, ArrayRef<StringRef> Paths) {
ErrorOr<std::string> Path = sys::findProgramByName(Name, Paths);
if (!Path)
Path = sys::findProgramByName(Name);
if (!Path && DryRun)
return Name.str();
if (!Path)
return createStringError(Path.getError(),
"Unable to find '" + Name + "' in path");
return *Path;
}
/// Runs the wrapped linker job with the newly created input.
Error runLinker(ArrayRef<StringRef> Files, const ArgList &Args) {
llvm::TimeTraceScope TimeScope("Execute host linker");
// Render the linker arguments and add the newly created image. We add it
// after the output file to ensure it is linked with the correct libraries.
StringRef LinkerPath = Args.getLastArgValue(OPT_linker_path_EQ);
ArgStringList NewLinkerArgs;
for (const opt::Arg *Arg : Args) {
// Do not forward arguments only intended for the linker wrapper.
if (Arg->getOption().hasFlag(WrapperOnlyOption))
continue;
Arg->render(Args, NewLinkerArgs);
if (Arg->getOption().matches(OPT_o))
llvm::transform(Files, std::back_inserter(NewLinkerArgs),
[&](StringRef Arg) { return Args.MakeArgString(Arg); });
}
SmallVector<StringRef> LinkerArgs({LinkerPath});
for (StringRef Arg : NewLinkerArgs)
LinkerArgs.push_back(Arg);
if (Error Err = executeCommands(LinkerPath, LinkerArgs))
return Err;
return Error::success();
}
void printVersion(raw_ostream &OS) {
OS << clang::getClangToolFullVersion("clang-linker-wrapper") << '\n';
}
namespace nvptx {
Expected<StringRef>
fatbinary(ArrayRef<std::pair<StringRef, StringRef>> InputFiles,
const ArgList &Args) {
llvm::TimeTraceScope TimeScope("NVPTX fatbinary");
// NVPTX uses the fatbinary program to bundle the linked images.
Expected<std::string> FatBinaryPath =
findProgram("fatbinary", {CudaBinaryPath + "/bin"});
if (!FatBinaryPath)
return FatBinaryPath.takeError();
llvm::Triple Triple(
Args.getLastArgValue(OPT_host_triple_EQ, sys::getDefaultTargetTriple()));
// Create a new file to write the linked device image to.
auto TempFileOrErr =
createOutputFile(sys::path::filename(ExecutableName), "fatbin");
if (!TempFileOrErr)
return TempFileOrErr.takeError();
SmallVector<StringRef, 16> CmdArgs;
CmdArgs.push_back(*FatBinaryPath);
CmdArgs.push_back(Triple.isArch64Bit() ? "-64" : "-32");
CmdArgs.push_back("--create");
CmdArgs.push_back(*TempFileOrErr);
for (const auto &[File, Arch] : InputFiles)
CmdArgs.push_back(
Args.MakeArgString("--image=profile=" + Arch + ",file=" + File));
if (Error Err = executeCommands(*FatBinaryPath, CmdArgs))
return std::move(Err);
return *TempFileOrErr;
}
} // namespace nvptx
namespace amdgcn {
Expected<StringRef>
fatbinary(ArrayRef<std::pair<StringRef, StringRef>> InputFiles,
const ArgList &Args) {
llvm::TimeTraceScope TimeScope("AMDGPU Fatbinary");
// AMDGPU uses the clang-offload-bundler to bundle the linked images.
Expected<std::string> OffloadBundlerPath = findProgram(
"clang-offload-bundler", {getMainExecutable("clang-offload-bundler")});
if (!OffloadBundlerPath)
return OffloadBundlerPath.takeError();
llvm::Triple Triple(
Args.getLastArgValue(OPT_host_triple_EQ, sys::getDefaultTargetTriple()));
// Create a new file to write the linked device image to.
auto TempFileOrErr =
createOutputFile(sys::path::filename(ExecutableName), "hipfb");
if (!TempFileOrErr)
return TempFileOrErr.takeError();
BumpPtrAllocator Alloc;
StringSaver Saver(Alloc);
SmallVector<StringRef, 16> CmdArgs;
CmdArgs.push_back(*OffloadBundlerPath);
CmdArgs.push_back("-type=o");
CmdArgs.push_back("-bundle-align=4096");
SmallVector<StringRef> Targets = {"-targets=host-x86_64-unknown-linux"};
for (const auto &[File, Arch] : InputFiles)
Targets.push_back(Saver.save("hipv4-amdgcn-amd-amdhsa--" + Arch));
CmdArgs.push_back(Saver.save(llvm::join(Targets, ",")));
CmdArgs.push_back("-input=/dev/null");
for (const auto &[File, Arch] : InputFiles)
CmdArgs.push_back(Saver.save("-input=" + File));
CmdArgs.push_back(Saver.save("-output=" + *TempFileOrErr));
if (Error Err = executeCommands(*OffloadBundlerPath, CmdArgs))
return std::move(Err);
return *TempFileOrErr;
}
} // namespace amdgcn
namespace generic {
Expected<StringRef> clang(ArrayRef<StringRef> InputFiles, const ArgList &Args) {
llvm::TimeTraceScope TimeScope("Clang");
// Use `clang` to invoke the appropriate device tools.
Expected<std::string> ClangPath =
findProgram("clang", {getMainExecutable("clang")});
if (!ClangPath)
return ClangPath.takeError();
const llvm::Triple Triple(Args.getLastArgValue(OPT_triple_EQ));
StringRef Arch = Args.getLastArgValue(OPT_arch_EQ);
if (Arch.empty())
Arch = "native";
// Create a new file to write the linked device image to. Assume that the
// input filename already has the device and architecture.
auto TempFileOrErr =
createOutputFile(sys::path::filename(ExecutableName) + "." +
Triple.getArchName() + "." + Arch,
"img");
if (!TempFileOrErr)
return TempFileOrErr.takeError();
StringRef OptLevel = Args.getLastArgValue(OPT_opt_level, "O2");
SmallVector<StringRef, 16> CmdArgs{
*ClangPath,
"-o",
*TempFileOrErr,
Args.MakeArgString("--target=" + Triple.getTriple()),
Triple.isAMDGPU() ? Args.MakeArgString("-mcpu=" + Arch)
: Args.MakeArgString("-march=" + Arch),
Args.MakeArgString("-" + OptLevel),
"-Wl,--no-undefined",
};
for (StringRef InputFile : InputFiles)
CmdArgs.push_back(InputFile);
// If this is CPU offloading we copy the input libraries.
if (!Triple.isAMDGPU() && !Triple.isNVPTX()) {
CmdArgs.push_back("-Wl,-Bsymbolic");
CmdArgs.push_back("-shared");
ArgStringList LinkerArgs;
for (const opt::Arg *Arg : Args.filtered(OPT_library, OPT_library_path))
Arg->render(Args, LinkerArgs);
for (const opt::Arg *Arg : Args.filtered(OPT_rpath))
LinkerArgs.push_back(
Args.MakeArgString("-Wl,-rpath," + StringRef(Arg->getValue())));
llvm::copy(LinkerArgs, std::back_inserter(CmdArgs));
}
if (Args.hasArg(OPT_debug))
CmdArgs.push_back("-g");
if (SaveTemps)
CmdArgs.push_back("-save-temps");
if (Verbose)
CmdArgs.push_back("-v");
if (!CudaBinaryPath.empty())
CmdArgs.push_back(Args.MakeArgString("--cuda-path=" + CudaBinaryPath));
for (StringRef Arg : Args.getAllArgValues(OPT_ptxas_arg))
llvm::copy(SmallVector<StringRef>({"-Xcuda-ptxas", Arg}),
std::back_inserter(CmdArgs));
for (StringRef Arg : Args.getAllArgValues(OPT_linker_arg_EQ))
CmdArgs.push_back(Args.MakeArgString("-Wl," + Arg));
for (StringRef Arg : Args.getAllArgValues(OPT_builtin_bitcode_EQ)) {
if (llvm::Triple(Arg.split('=').first) == Triple)
CmdArgs.append({"-Xclang", "-mlink-builtin-bitcode", "-Xclang",
Args.MakeArgString(Arg.split('=').second)});
}
// The OpenMPOpt pass can introduce new calls and is expensive, we do not want
// this when running CodeGen through clang.
if (Args.hasArg(OPT_clang_backend) || Args.hasArg(OPT_builtin_bitcode_EQ))
CmdArgs.append({"-mllvm", "-openmp-opt-disable"});
if (Error Err = executeCommands(*ClangPath, CmdArgs))
return std::move(Err);
return *TempFileOrErr;
}
} // namespace generic
Expected<StringRef> linkDevice(ArrayRef<StringRef> InputFiles,
const ArgList &Args) {
const llvm::Triple Triple(Args.getLastArgValue(OPT_triple_EQ));
switch (Triple.getArch()) {
case Triple::nvptx:
case Triple::nvptx64:
case Triple::amdgcn:
case Triple::x86:
case Triple::x86_64:
case Triple::aarch64:
case Triple::aarch64_be:
case Triple::ppc64:
case Triple::ppc64le:
return generic::clang(InputFiles, Args);
default:
return createStringError(inconvertibleErrorCode(),
Triple.getArchName() +
" linking is not supported");
}
}
void diagnosticHandler(const DiagnosticInfo &DI) {
std::string ErrStorage;
raw_string_ostream OS(ErrStorage);
DiagnosticPrinterRawOStream DP(OS);
DI.print(DP);
switch (DI.getSeverity()) {
case DS_Error:
WithColor::error(errs(), LinkerExecutable) << ErrStorage << "\n";
LTOError = true;
break;
case DS_Warning:
WithColor::warning(errs(), LinkerExecutable) << ErrStorage << "\n";
break;
case DS_Note:
WithColor::note(errs(), LinkerExecutable) << ErrStorage << "\n";
break;
case DS_Remark:
WithColor::remark(errs()) << ErrStorage << "\n";
break;
}
}
// Get the list of target features from the input file and unify them such that
// if there are multiple +xxx or -xxx features we only keep the last one.
std::vector<std::string> getTargetFeatures(ArrayRef<OffloadFile> InputFiles) {
SmallVector<StringRef> Features;
for (const OffloadFile &File : InputFiles) {
for (auto Arg : llvm::split(File.getBinary()->getString("feature"), ","))
Features.emplace_back(Arg);
}
// Only add a feature if it hasn't been seen before starting from the end.
std::vector<std::string> UnifiedFeatures;
DenseSet<StringRef> UsedFeatures;
for (StringRef Feature : llvm::reverse(Features)) {
if (UsedFeatures.insert(Feature.drop_front()).second)
UnifiedFeatures.push_back(Feature.str());
}
return UnifiedFeatures;
}
template <typename ModuleHook = function_ref<bool(size_t, const Module &)>>
std::unique_ptr<lto::LTO> createLTO(
const ArgList &Args, const std::vector<std::string> &Features,
ModuleHook Hook = [](size_t, const Module &) { return true; }) {
const llvm::Triple Triple(Args.getLastArgValue(OPT_triple_EQ));
StringRef Arch = Args.getLastArgValue(OPT_arch_EQ);
lto::Config Conf;
lto::ThinBackend Backend;
// TODO: Handle index-only thin-LTO
Backend =
lto::createInProcessThinBackend(llvm::heavyweight_hardware_concurrency());
Conf.CPU = Arch.str();
Conf.Options = codegen::InitTargetOptionsFromCodeGenFlags(Triple);
StringRef OptLevel = Args.getLastArgValue(OPT_opt_level, "O2");
Conf.MAttrs = Features;
std::optional<CodeGenOpt::Level> CGOptLevelOrNone =
CodeGenOpt::parseLevel(OptLevel[1]);
assert(CGOptLevelOrNone && "Invalid optimization level");
Conf.CGOptLevel = *CGOptLevelOrNone;
Conf.OptLevel = OptLevel[1] - '0';
Conf.DefaultTriple = Triple.getTriple();
LTOError = false;
Conf.DiagHandler = diagnosticHandler;
Conf.PTO.LoopVectorization = Conf.OptLevel > 1;
Conf.PTO.SLPVectorization = Conf.OptLevel > 1;
if (SaveTemps) {
std::string TempName = (sys::path::filename(ExecutableName) + "." +
Triple.getTriple() + "." + Arch)
.str();
Conf.PostInternalizeModuleHook = [=](size_t Task, const Module &M) {
std::string File =
!Task ? TempName + ".postlink.bc"
: TempName + "." + std::to_string(Task) + ".postlink.bc";
error_code EC;
raw_fd_ostream LinkedBitcode(File, EC, sys::fs::OF_None);
if (EC)
reportError(errorCodeToError(EC));
WriteBitcodeToFile(M, LinkedBitcode);
return true;
};
Conf.PreCodeGenModuleHook = [=](size_t Task, const Module &M) {
std::string File =
!Task ? TempName + ".postopt.bc"
: TempName + "." + std::to_string(Task) + ".postopt.bc";
error_code EC;
raw_fd_ostream LinkedBitcode(File, EC, sys::fs::OF_None);
if (EC)
reportError(errorCodeToError(EC));
WriteBitcodeToFile(M, LinkedBitcode);
return true;
};
}
Conf.PostOptModuleHook = Hook;
Conf.CGFileType =
(Triple.isNVPTX() || SaveTemps) ? CGFT_AssemblyFile : CGFT_ObjectFile;
// TODO: Handle remark files
Conf.HasWholeProgramVisibility = Args.hasArg(OPT_whole_program);
return std::make_unique<lto::LTO>(std::move(Conf), Backend);
}
// Returns true if \p S is valid as a C language identifier and will be given
// `__start_` and `__stop_` symbols.
bool isValidCIdentifier(StringRef S) {
return !S.empty() && (isAlpha(S[0]) || S[0] == '_') &&
llvm::all_of(llvm::drop_begin(S),
[](char C) { return C == '_' || isAlnum(C); });
}
Error linkBitcodeFiles(SmallVectorImpl<OffloadFile> &InputFiles,
SmallVectorImpl<StringRef> &OutputFiles,
const ArgList &Args) {
llvm::TimeTraceScope TimeScope("Link bitcode files");
const llvm::Triple Triple(Args.getLastArgValue(OPT_triple_EQ));
StringRef Arch = Args.getLastArgValue(OPT_arch_EQ);
SmallVector<OffloadFile, 4> BitcodeInputFiles;
DenseSet<StringRef> UsedInRegularObj;
DenseSet<StringRef> UsedInSharedLib;
BumpPtrAllocator Alloc;
StringSaver Saver(Alloc);
// Search for bitcode files in the input and create an LTO input file. If it
// is not a bitcode file, scan its symbol table for symbols we need to save.
for (OffloadFile &File : InputFiles) {
MemoryBufferRef Buffer = MemoryBufferRef(File.getBinary()->getImage(), "");
file_magic Type = identify_magic(Buffer.getBuffer());
switch (Type) {
case file_magic::bitcode: {
BitcodeInputFiles.emplace_back(std::move(File));
continue;
}
case file_magic::elf_relocatable:
case file_magic::elf_shared_object: {
Expected<std::unique_ptr<ObjectFile>> ObjFile =
ObjectFile::createObjectFile(Buffer);
if (!ObjFile)
continue;
for (SymbolRef Sym : (*ObjFile)->symbols()) {
Expected<StringRef> Name = Sym.getName();
if (!Name)
return Name.takeError();
// Record if we've seen these symbols in any object or shared libraries.
if ((*ObjFile)->isRelocatableObject())
UsedInRegularObj.insert(Saver.save(*Name));
else
UsedInSharedLib.insert(Saver.save(*Name));
}
continue;
}
default:
continue;
}
}
if (BitcodeInputFiles.empty())
return Error::success();
// Remove all the bitcode files that we moved from the original input.
llvm::erase_if(InputFiles, [](OffloadFile &F) { return !F.getBinary(); });
// LTO Module hook to output bitcode without running the backend.
SmallVector<StringRef> BitcodeOutput;
auto OutputBitcode = [&](size_t, const Module &M) {
auto TempFileOrErr = createOutputFile(sys::path::filename(ExecutableName) +
"-jit-" + Triple.getTriple(),
"bc");
if (!TempFileOrErr)
reportError(TempFileOrErr.takeError());
std::error_code EC;
raw_fd_ostream LinkedBitcode(*TempFileOrErr, EC, sys::fs::OF_None);
if (EC)
reportError(errorCodeToError(EC));
WriteBitcodeToFile(M, LinkedBitcode);
BitcodeOutput.push_back(*TempFileOrErr);
return false;
};
// We assume visibility of the whole program if every input file was bitcode.
auto Features = getTargetFeatures(BitcodeInputFiles);
auto LTOBackend = Args.hasArg(OPT_embed_bitcode) ||
Args.hasArg(OPT_builtin_bitcode_EQ) ||
Args.hasArg(OPT_clang_backend)
? createLTO(Args, Features, OutputBitcode)
: createLTO(Args, Features);
// We need to resolve the symbols so the LTO backend knows which symbols need
// to be kept or can be internalized. This is a simplified symbol resolution
// scheme to approximate the full resolution a linker would do.
uint64_t Idx = 0;
DenseSet<StringRef> PrevailingSymbols;
for (auto &BitcodeInput : BitcodeInputFiles) {
// Get a semi-unique buffer identifier for Thin-LTO.
StringRef Identifier = Saver.save(
std::to_string(Idx++) + "." +
BitcodeInput.getBinary()->getMemoryBufferRef().getBufferIdentifier());
MemoryBufferRef Buffer =
MemoryBufferRef(BitcodeInput.getBinary()->getImage(), Identifier);
Expected<std::unique_ptr<lto::InputFile>> BitcodeFileOrErr =
llvm::lto::InputFile::create(Buffer);
if (!BitcodeFileOrErr)
return BitcodeFileOrErr.takeError();
// Save the input file and the buffer associated with its memory.
const auto Symbols = (*BitcodeFileOrErr)->symbols();
SmallVector<lto::SymbolResolution, 16> Resolutions(Symbols.size());
size_t Idx = 0;
for (auto &Sym : Symbols) {
lto::SymbolResolution &Res = Resolutions[Idx++];
// We will use this as the prevailing symbol definition in LTO unless
// it is undefined or another definition has already been used.
Res.Prevailing =
!Sym.isUndefined() &&
PrevailingSymbols.insert(Saver.save(Sym.getName())).second;
// We need LTO to preseve the following global symbols:
// 1) Symbols used in regular objects.
// 2) Sections that will be given a __start/__stop symbol.
// 3) Prevailing symbols that are needed visible to external libraries.
Res.VisibleToRegularObj =
UsedInRegularObj.contains(Sym.getName()) ||
isValidCIdentifier(Sym.getSectionName()) ||
(Res.Prevailing &&
(Sym.getVisibility() != GlobalValue::HiddenVisibility &&
!Sym.canBeOmittedFromSymbolTable()));
// Identify symbols that must be exported dynamically and can be
// referenced by other files.
Res.ExportDynamic =
Sym.getVisibility() != GlobalValue::HiddenVisibility &&
(UsedInSharedLib.contains(Sym.getName()) ||
!Sym.canBeOmittedFromSymbolTable());
// The final definition will reside in this linkage unit if the symbol is
// defined and local to the module. This only checks for bitcode files,
// full assertion will require complete symbol resolution.
Res.FinalDefinitionInLinkageUnit =
Sym.getVisibility() != GlobalValue::DefaultVisibility &&
(!Sym.isUndefined() && !Sym.isCommon());
// We do not support linker redefined symbols (e.g. --wrap) for device
// image linking, so the symbols will not be changed after LTO.
Res.LinkerRedefined = false;
}
// Add the bitcode file with its resolved symbols to the LTO job.
if (Error Err = LTOBackend->add(std::move(*BitcodeFileOrErr), Resolutions))
return Err;
}
// Run the LTO job to compile the bitcode.
size_t MaxTasks = LTOBackend->getMaxTasks();
SmallVector<StringRef> Files(MaxTasks);
auto AddStream =
[&](size_t Task,
const Twine &ModuleName) -> std::unique_ptr<CachedFileStream> {
int FD = -1;
auto &TempFile = Files[Task];
StringRef Extension = (Triple.isNVPTX() || SaveTemps) ? "s" : "o";
std::string TaskStr = Task ? "." + std::to_string(Task) : "";
auto TempFileOrErr =
createOutputFile(sys::path::filename(ExecutableName) + "." +
Triple.getTriple() + "." + Arch + TaskStr,
Extension);
if (!TempFileOrErr)
reportError(TempFileOrErr.takeError());
TempFile = *TempFileOrErr;
if (std::error_code EC = sys::fs::openFileForWrite(TempFile, FD))
reportError(errorCodeToError(EC));
return std::make_unique<CachedFileStream>(
std::make_unique<llvm::raw_fd_ostream>(FD, true));
};
if (Error Err = LTOBackend->run(AddStream))
return Err;
if (LTOError)
return createStringError(inconvertibleErrorCode(),
"Errors encountered inside the LTO pipeline.");
// If we are embedding bitcode we only need the intermediate output.
bool SingleOutput = Files.size() == 1;
if (Args.hasArg(OPT_embed_bitcode)) {
if (BitcodeOutput.size() != 1 || !SingleOutput)
return createStringError(inconvertibleErrorCode(),
"Cannot embed bitcode with multiple files.");
OutputFiles.push_back(Args.MakeArgString(BitcodeOutput.front()));
return Error::success();
}
// Append the new inputs to the device linker input. If the user requested an
// internalizing link we need to pass the bitcode to clang.
for (StringRef File :
Args.hasArg(OPT_clang_backend) || Args.hasArg(OPT_builtin_bitcode_EQ)
? BitcodeOutput
: Files)
OutputFiles.push_back(File);
return Error::success();
}
Expected<StringRef> writeOffloadFile(const OffloadFile &File) {
const OffloadBinary &Binary = *File.getBinary();
StringRef Prefix =
sys::path::stem(Binary.getMemoryBufferRef().getBufferIdentifier());
StringRef Suffix = getImageKindName(Binary.getImageKind());
auto TempFileOrErr = createOutputFile(
Prefix + "-" + Binary.getTriple() + "-" + Binary.getArch(), Suffix);
if (!TempFileOrErr)
return TempFileOrErr.takeError();
Expected<std::unique_ptr<FileOutputBuffer>> OutputOrErr =
FileOutputBuffer::create(*TempFileOrErr, Binary.getImage().size());
if (!OutputOrErr)
return OutputOrErr.takeError();
std::unique_ptr<FileOutputBuffer> Output = std::move(*OutputOrErr);
llvm::copy(Binary.getImage(), Output->getBufferStart());
if (Error E = Output->commit())
return std::move(E);
return *TempFileOrErr;
}
// Compile the module to an object file using the appropriate target machine for
// the host triple.
Expected<StringRef> compileModule(Module &M) {
llvm::TimeTraceScope TimeScope("Compile module");
std::string Msg;
const Target *T = TargetRegistry::lookupTarget(M.getTargetTriple(), Msg);
if (!T)
return createStringError(inconvertibleErrorCode(), Msg);
auto Options =
codegen::InitTargetOptionsFromCodeGenFlags(Triple(M.getTargetTriple()));
StringRef CPU = "";
StringRef Features = "";
std::unique_ptr<TargetMachine> TM(
T->createTargetMachine(M.getTargetTriple(), CPU, Features, Options,
Reloc::PIC_, M.getCodeModel()));
if (M.getDataLayout().isDefault())
M.setDataLayout(TM->createDataLayout());
int FD = -1;
auto TempFileOrErr = createOutputFile(
sys::path::filename(ExecutableName) + ".image.wrapper", "o");
if (!TempFileOrErr)
return TempFileOrErr.takeError();
if (std::error_code EC = sys::fs::openFileForWrite(*TempFileOrErr, FD))
return errorCodeToError(EC);
auto OS = std::make_unique<llvm::raw_fd_ostream>(FD, true);
legacy::PassManager CodeGenPasses;
TargetLibraryInfoImpl TLII(Triple(M.getTargetTriple()));
CodeGenPasses.add(new TargetLibraryInfoWrapperPass(TLII));
if (TM->addPassesToEmitFile(CodeGenPasses, *OS, nullptr, CGFT_ObjectFile))
return createStringError(inconvertibleErrorCode(),
"Failed to execute host backend");
CodeGenPasses.run(M);
return *TempFileOrErr;
}
/// Creates the object file containing the device image and runtime
/// registration code from the device images stored in \p Images.
Expected<StringRef>
wrapDeviceImages(ArrayRef<std::unique_ptr<MemoryBuffer>> Buffers,
const ArgList &Args, OffloadKind Kind) {
llvm::TimeTraceScope TimeScope("Wrap bundled images");
SmallVector<ArrayRef<char>, 4> BuffersToWrap;
for (const auto &Buffer : Buffers)
BuffersToWrap.emplace_back(
ArrayRef<char>(Buffer->getBufferStart(), Buffer->getBufferSize()));
LLVMContext Context;
Module M("offload.wrapper.module", Context);
M.setTargetTriple(
Args.getLastArgValue(OPT_host_triple_EQ, sys::getDefaultTargetTriple()));
switch (Kind) {
case OFK_OpenMP:
if (Error Err = wrapOpenMPBinaries(M, BuffersToWrap))
return std::move(Err);
break;
case OFK_Cuda:
if (Error Err = wrapCudaBinary(M, BuffersToWrap.front()))
return std::move(Err);
break;
case OFK_HIP:
if (Error Err = wrapHIPBinary(M, BuffersToWrap.front()))
return std::move(Err);
break;
default:
return createStringError(inconvertibleErrorCode(),
getOffloadKindName(Kind) +
" wrapping is not supported");
}
if (Args.hasArg(OPT_print_wrapped_module))
errs() << M;
if (Args.hasArg(OPT_save_temps)) {
int FD = -1;
auto TempFileOrErr =
createOutputFile(sys::path::filename(ExecutableName) + "." +
getOffloadKindName(Kind) + ".image.wrapper",
"bc");
if (!TempFileOrErr)
return TempFileOrErr.takeError();
if (std::error_code EC = sys::fs::openFileForWrite(*TempFileOrErr, FD))
return errorCodeToError(EC);
llvm::raw_fd_ostream OS(FD, true);
WriteBitcodeToFile(M, OS);
}
auto FileOrErr = compileModule(M);
if (!FileOrErr)
return FileOrErr.takeError();
return *FileOrErr;
}
Expected<SmallVector<std::unique_ptr<MemoryBuffer>>>
bundleOpenMP(ArrayRef<OffloadingImage> Images) {
SmallVector<std::unique_ptr<MemoryBuffer>> Buffers;
for (const OffloadingImage &Image : Images)
Buffers.emplace_back(OffloadBinary::write(Image));
return std::move(Buffers);
}
Expected<SmallVector<std::unique_ptr<MemoryBuffer>>>
bundleCuda(ArrayRef<OffloadingImage> Images, const ArgList &Args) {
SmallVector<std::pair<StringRef, StringRef>, 4> InputFiles;
for (const OffloadingImage &Image : Images)
InputFiles.emplace_back(std::make_pair(Image.Image->getBufferIdentifier(),
Image.StringData.lookup("arch")));
Triple TheTriple = Triple(Images.front().StringData.lookup("triple"));
auto FileOrErr = nvptx::fatbinary(InputFiles, Args);
if (!FileOrErr)
return FileOrErr.takeError();
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ImageOrError =
llvm::MemoryBuffer::getFileOrSTDIN(*FileOrErr);
SmallVector<std::unique_ptr<MemoryBuffer>> Buffers;
if (std::error_code EC = ImageOrError.getError())
return createFileError(*FileOrErr, EC);
Buffers.emplace_back(std::move(*ImageOrError));
return std::move(Buffers);
}
Expected<SmallVector<std::unique_ptr<MemoryBuffer>>>
bundleHIP(ArrayRef<OffloadingImage> Images, const ArgList &Args) {
SmallVector<std::pair<StringRef, StringRef>, 4> InputFiles;
for (const OffloadingImage &Image : Images)
InputFiles.emplace_back(std::make_pair(Image.Image->getBufferIdentifier(),
Image.StringData.lookup("arch")));
Triple TheTriple = Triple(Images.front().StringData.lookup("triple"));
auto FileOrErr = amdgcn::fatbinary(InputFiles, Args);
if (!FileOrErr)
return FileOrErr.takeError();
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ImageOrError =
llvm::MemoryBuffer::getFileOrSTDIN(*FileOrErr);
SmallVector<std::unique_ptr<MemoryBuffer>> Buffers;
if (std::error_code EC = ImageOrError.getError())
return createFileError(*FileOrErr, EC);
Buffers.emplace_back(std::move(*ImageOrError));
return std::move(Buffers);
}
/// Transforms the input \p Images into the binary format the runtime expects
/// for the given \p Kind.
Expected<SmallVector<std::unique_ptr<MemoryBuffer>>>
bundleLinkedOutput(ArrayRef<OffloadingImage> Images, const ArgList &Args,
OffloadKind Kind) {
llvm::TimeTraceScope TimeScope("Bundle linked output");
switch (Kind) {
case OFK_OpenMP:
return bundleOpenMP(Images);
case OFK_Cuda:
return bundleCuda(Images, Args);
case OFK_HIP:
return bundleHIP(Images, Args);
default:
return createStringError(inconvertibleErrorCode(),
getOffloadKindName(Kind) +
" bundling is not supported");
}
}
/// Returns a new ArgList containg arguments used for the device linking phase.
DerivedArgList getLinkerArgs(ArrayRef<OffloadFile> Input,
const InputArgList &Args) {
DerivedArgList DAL = DerivedArgList(DerivedArgList(Args));
for (Arg *A : Args)
DAL.append(A);
// Set the subarchitecture and target triple for this compilation.
const OptTable &Tbl = getOptTable();
DAL.AddJoinedArg(nullptr, Tbl.getOption(OPT_arch_EQ),
Args.MakeArgString(Input.front().getBinary()->getArch()));
DAL.AddJoinedArg(nullptr, Tbl.getOption(OPT_triple_EQ),
Args.MakeArgString(Input.front().getBinary()->getTriple()));
// If every input file is bitcode we have whole program visibility as we do
// only support static linking with bitcode.
auto ContainsBitcode = [](const OffloadFile &F) {
return identify_magic(F.getBinary()->getImage()) == file_magic::bitcode;
};
if (llvm::all_of(Input, ContainsBitcode))
DAL.AddFlagArg(nullptr, Tbl.getOption(OPT_whole_program));
// Forward '-Xoffload-linker' options to the appropriate backend.
for (StringRef Arg : Args.getAllArgValues(OPT_device_linker_args_EQ)) {
auto [Triple, Value] = Arg.split('=');
if (Value.empty())
DAL.AddJoinedArg(nullptr, Tbl.getOption(OPT_linker_arg_EQ),
Args.MakeArgString(Triple));
else if (Triple == DAL.getLastArgValue(OPT_triple_EQ))
DAL.AddJoinedArg(nullptr, Tbl.getOption(OPT_linker_arg_EQ),
Args.MakeArgString(Value));
}
return DAL;
}
/// Transforms all the extracted offloading input files into an image that can
/// be registered by the runtime.
Expected<SmallVector<StringRef>>
linkAndWrapDeviceFiles(SmallVectorImpl<OffloadFile> &LinkerInputFiles,
const InputArgList &Args, char **Argv, int Argc) {
llvm::TimeTraceScope TimeScope("Handle all device input");
DenseMap<OffloadFile::TargetID, SmallVector<OffloadFile>> InputMap;
for (auto &File : LinkerInputFiles)
InputMap[File].emplace_back(std::move(File));
LinkerInputFiles.clear();
SmallVector<SmallVector<OffloadFile>> InputsForTarget;
for (auto &[ID, Input] : InputMap)
InputsForTarget.emplace_back(std::move(Input));
InputMap.clear();
std::mutex ImageMtx;
DenseMap<OffloadKind, SmallVector<OffloadingImage>> Images;
auto Err = parallelForEachError(InputsForTarget, [&](auto &Input) -> Error {
llvm::TimeTraceScope TimeScope("Link device input");
// Each thread needs its own copy of the base arguments to maintain
// per-device argument storage of synthetic strings.
const OptTable &Tbl = getOptTable();
BumpPtrAllocator Alloc;
StringSaver Saver(Alloc);
auto BaseArgs =
Tbl.parseArgs(Argc, Argv, OPT_INVALID, Saver, [](StringRef Err) {
reportError(createStringError(inconvertibleErrorCode(), Err));
});
auto LinkerArgs = getLinkerArgs(Input, BaseArgs);
DenseSet<OffloadKind> ActiveOffloadKinds;
for (const auto &File : Input)
if (File.getBinary()->getOffloadKind() != OFK_None)
ActiveOffloadKinds.insert(File.getBinary()->getOffloadKind());
// First link and remove all the input files containing bitcode.
SmallVector<StringRef> InputFiles;
if (Error Err = linkBitcodeFiles(Input, InputFiles, LinkerArgs))
return Err;
// Write any remaining device inputs to an output file for the linker.
for (const OffloadFile &File : Input) {
auto FileNameOrErr = writeOffloadFile(File);
if (!FileNameOrErr)
return FileNameOrErr.takeError();
InputFiles.emplace_back(*FileNameOrErr);
}
// Link the remaining device files using the device linker.
auto OutputOrErr = !Args.hasArg(OPT_embed_bitcode)
? linkDevice(InputFiles, LinkerArgs)
: InputFiles.front();
if (!OutputOrErr)
return OutputOrErr.takeError();
// Store the offloading image for each linked output file.
for (OffloadKind Kind : ActiveOffloadKinds) {
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> FileOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(*OutputOrErr);
if (std::error_code EC = FileOrErr.getError()) {
if (DryRun)
FileOrErr = MemoryBuffer::getMemBuffer("");
else
return createFileError(*OutputOrErr, EC);
}
std::scoped_lock<decltype(ImageMtx)> Guard(ImageMtx);
OffloadingImage TheImage{};
TheImage.TheImageKind =
Args.hasArg(OPT_embed_bitcode) ? IMG_Bitcode : IMG_Object;
TheImage.TheOffloadKind = Kind;
TheImage.StringData["triple"] =
Args.MakeArgString(LinkerArgs.getLastArgValue(OPT_triple_EQ));
TheImage.StringData["arch"] =
Args.MakeArgString(LinkerArgs.getLastArgValue(OPT_arch_EQ));
TheImage.Image = std::move(*FileOrErr);
Images[Kind].emplace_back(std::move(TheImage));
}
return Error::success();
});
if (Err)
return std::move(Err);
// Create a binary image of each offloading image and embed it into a new
// object file.
SmallVector<StringRef> WrappedOutput;
for (auto &[Kind, Input] : Images) {
// We sort the entries before bundling so they appear in a deterministic
// order in the final binary.
llvm::sort(Input, [](OffloadingImage &A, OffloadingImage &B) {
return A.StringData["triple"] > B.StringData["triple"] ||
A.StringData["arch"] > B.StringData["arch"] ||
A.TheOffloadKind < B.TheOffloadKind;
});
auto BundledImagesOrErr = bundleLinkedOutput(Input, Args, Kind);
if (!BundledImagesOrErr)
return BundledImagesOrErr.takeError();
auto OutputOrErr = wrapDeviceImages(*BundledImagesOrErr, Args, Kind);
if (!OutputOrErr)
return OutputOrErr.takeError();
WrappedOutput.push_back(*OutputOrErr);
}
return WrappedOutput;
}
std::optional<std::string> findFile(StringRef Dir, StringRef Root,
const Twine &Name) {
SmallString<128> Path;
if (Dir.startswith("="))
sys::path::append(Path, Root, Dir.substr(1), Name);
else
sys::path::append(Path, Dir, Name);
if (sys::fs::exists(Path))
return static_cast<std::string>(Path);
return std::nullopt;
}
std::optional<std::string>
findFromSearchPaths(StringRef Name, StringRef Root,
ArrayRef<StringRef> SearchPaths) {
for (StringRef Dir : SearchPaths)
if (std::optional<std::string> File = findFile(Dir, Root, Name))
return File;
return std::nullopt;
}
std::optional<std::string>
searchLibraryBaseName(StringRef Name, StringRef Root,
ArrayRef<StringRef> SearchPaths) {
for (StringRef Dir : SearchPaths) {
if (std::optional<std::string> File =
findFile(Dir, Root, "lib" + Name + ".so"))
return File;
if (std::optional<std::string> File =
findFile(Dir, Root, "lib" + Name + ".a"))
return File;
}
return std::nullopt;
}
/// Search for static libraries in the linker's library path given input like
/// `-lfoo` or `-l:libfoo.a`.
std::optional<std::string> searchLibrary(StringRef Input, StringRef Root,
ArrayRef<StringRef> SearchPaths) {
if (Input.startswith(":"))
return findFromSearchPaths(Input.drop_front(), Root, SearchPaths);
return searchLibraryBaseName(Input, Root, SearchPaths);
}
/// Common redeclaration of needed symbol flags.
enum Symbol : uint32_t {
Sym_None = 0,
Sym_Undefined = 1U << 1,
Sym_Weak = 1U << 2,
};
/// Scan the symbols from a BitcodeFile \p Buffer and record if we need to
/// extract any symbols from it.
Expected<bool> getSymbolsFromBitcode(MemoryBufferRef Buffer, OffloadKind Kind,
bool IsArchive, StringSaver &Saver,
DenseMap<StringRef, Symbol> &Syms) {
Expected<IRSymtabFile> IRSymtabOrErr = readIRSymtab(Buffer);
if (!IRSymtabOrErr)
return IRSymtabOrErr.takeError();
bool ShouldExtract = !IsArchive;
DenseMap<StringRef, Symbol> TmpSyms;
for (unsigned I = 0; I != IRSymtabOrErr->Mods.size(); ++I) {
for (const auto &Sym : IRSymtabOrErr->TheReader.module_symbols(I)) {
if (Sym.isFormatSpecific() || !Sym.isGlobal())
continue;
bool NewSymbol = Syms.count(Sym.getName()) == 0;
auto OldSym = NewSymbol ? Sym_None : Syms[Sym.getName()];
// We will extract if it defines a currenlty undefined non-weak symbol.
bool ResolvesStrongReference =
((OldSym & Sym_Undefined && !(OldSym & Sym_Weak)) &&
!Sym.isUndefined());
// We will extract if it defines a new global symbol visible to the host.
// This is only necessary for code targeting an offloading language.
bool NewGlobalSymbol =
((NewSymbol || (OldSym & Sym_Undefined)) && !Sym.isUndefined() &&
!Sym.canBeOmittedFromSymbolTable() && Kind != object::OFK_None &&
(Sym.getVisibility() != GlobalValue::HiddenVisibility));
ShouldExtract |= ResolvesStrongReference | NewGlobalSymbol;
// Update this symbol in the "table" with the new information.
if (OldSym & Sym_Undefined && !Sym.isUndefined())
TmpSyms[Saver.save(Sym.getName())] =
static_cast<Symbol>(OldSym & ~Sym_Undefined);
if (Sym.isUndefined() && NewSymbol)
TmpSyms[Saver.save(Sym.getName())] =
static_cast<Symbol>(OldSym | Sym_Undefined);
if (Sym.isWeak())
TmpSyms[Saver.save(Sym.getName())] =
static_cast<Symbol>(OldSym | Sym_Weak);
}
}
// If the file gets extracted we update the table with the new symbols.
if (ShouldExtract)
Syms.insert(std::begin(TmpSyms), std::end(TmpSyms));
return ShouldExtract;
}
/// Scan the symbols from an ObjectFile \p Obj and record if we need to extract
/// any symbols from it.
Expected<bool> getSymbolsFromObject(const ObjectFile &Obj, OffloadKind Kind,
bool IsArchive, StringSaver &Saver,
DenseMap<StringRef, Symbol> &Syms) {
bool ShouldExtract = !IsArchive;
DenseMap<StringRef, Symbol> TmpSyms;
for (SymbolRef Sym : Obj.symbols()) {
auto FlagsOrErr = Sym.getFlags();
if (!FlagsOrErr)
return FlagsOrErr.takeError();
if (!(*FlagsOrErr & SymbolRef::SF_Global) ||
(*FlagsOrErr & SymbolRef::SF_FormatSpecific))
continue;
auto NameOrErr = Sym.getName();
if (!NameOrErr)
return NameOrErr.takeError();
bool NewSymbol = Syms.count(*NameOrErr) == 0;
auto OldSym = NewSymbol ? Sym_None : Syms[*NameOrErr];
// We will extract if it defines a currenlty undefined non-weak symbol.
bool ResolvesStrongReference = (OldSym & Sym_Undefined) &&
!(OldSym & Sym_Weak) &&
!(*FlagsOrErr & SymbolRef::SF_Undefined);
// We will extract if it defines a new global symbol visible to the host.
// This is only necessary for code targeting an offloading language.
bool NewGlobalSymbol =
((NewSymbol || (OldSym & Sym_Undefined)) &&
!(*FlagsOrErr & SymbolRef::SF_Undefined) && Kind != object::OFK_None &&
!(*FlagsOrErr & SymbolRef::SF_Hidden));
ShouldExtract |= ResolvesStrongReference | NewGlobalSymbol;
// Update this symbol in the "table" with the new information.
if (OldSym & Sym_Undefined && !(*FlagsOrErr & SymbolRef::SF_Undefined))
TmpSyms[Saver.save(*NameOrErr)] =
static_cast<Symbol>(OldSym & ~Sym_Undefined);
if (*FlagsOrErr & SymbolRef::SF_Undefined && NewSymbol)
TmpSyms[Saver.save(*NameOrErr)] =
static_cast<Symbol>(OldSym | Sym_Undefined);
if (*FlagsOrErr & SymbolRef::SF_Weak)
TmpSyms[Saver.save(*NameOrErr)] = static_cast<Symbol>(OldSym | Sym_Weak);
}
// If the file gets extracted we update the table with the new symbols.
if (ShouldExtract)
Syms.insert(std::begin(TmpSyms), std::end(TmpSyms));
return ShouldExtract;
}
/// Attempt to 'resolve' symbols found in input files. We use this to
/// determine if an archive member needs to be extracted. An archive member
/// will be extracted if any of the following is true.
/// 1) It defines an undefined symbol in a regular object filie.
/// 2) It defines a global symbol without hidden visibility that has not
/// yet been defined.
Expected<bool> getSymbols(StringRef Image, OffloadKind Kind, bool IsArchive,
StringSaver &Saver,
DenseMap<StringRef, Symbol> &Syms) {
MemoryBufferRef Buffer = MemoryBufferRef(Image, "");
switch (identify_magic(Image)) {
case file_magic::bitcode:
return getSymbolsFromBitcode(Buffer, Kind, IsArchive, Saver, Syms);
case file_magic::elf_relocatable: {
Expected<std::unique_ptr<ObjectFile>> ObjFile =
ObjectFile::createObjectFile(Buffer);
if (!ObjFile)
return ObjFile.takeError();
return getSymbolsFromObject(**ObjFile, Kind, IsArchive, Saver, Syms);
}
default:
return false;
}
}
/// Search the input files and libraries for embedded device offloading code
/// and add it to the list of files to be linked. Files coming from static
/// libraries are only added to the input if they are used by an existing
/// input file.
Expected<SmallVector<OffloadFile>> getDeviceInput(const ArgList &Args) {
llvm::TimeTraceScope TimeScope("ExtractDeviceCode");
StringRef Root = Args.getLastArgValue(OPT_sysroot_EQ);
SmallVector<StringRef> LibraryPaths;
for (const opt::Arg *Arg : Args.filtered(OPT_library_path))
LibraryPaths.push_back(Arg->getValue());
BumpPtrAllocator Alloc;
StringSaver Saver(Alloc);
// Try to extract device code from the linker input files.
SmallVector<OffloadFile> InputFiles;
DenseMap<OffloadFile::TargetID, DenseMap<StringRef, Symbol>> Syms;
bool WholeArchive = false;
for (const opt::Arg *Arg : Args.filtered(
OPT_INPUT, OPT_library, OPT_whole_archive, OPT_no_whole_archive)) {
if (Arg->getOption().matches(OPT_whole_archive) ||
Arg->getOption().matches(OPT_no_whole_archive)) {
WholeArchive = Arg->getOption().matches(OPT_whole_archive);
continue;
}
std::optional<std::string> Filename =
Arg->getOption().matches(OPT_library)
? searchLibrary(Arg->getValue(), Root, LibraryPaths)
: std::string(Arg->getValue());
if (!Filename && Arg->getOption().matches(OPT_library))
reportError(createStringError(inconvertibleErrorCode(),
"unable to find library -l%s",
Arg->getValue()));
if (!Filename || !sys::fs::exists(*Filename) ||
sys::fs::is_directory(*Filename))
continue;
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
MemoryBuffer::getFileOrSTDIN(*Filename);
if (std::error_code EC = BufferOrErr.getError())
return createFileError(*Filename, EC);
MemoryBufferRef Buffer = **BufferOrErr;
if (identify_magic(Buffer.getBuffer()) == file_magic::elf_shared_object)
continue;
SmallVector<OffloadFile> Binaries;
if (Error Err = extractOffloadBinaries(Buffer, Binaries))
return std::move(Err);
// We only extract archive members that are needed.
bool IsArchive = identify_magic(Buffer.getBuffer()) == file_magic::archive;
bool Extracted = true;
while (Extracted) {
Extracted = false;
for (OffloadFile &Binary : Binaries) {
if (!Binary.getBinary())
continue;
// If we don't have an object file for this architecture do not
// extract.
if (IsArchive && !WholeArchive && !Syms.count(Binary))
continue;
Expected<bool> ExtractOrErr =
getSymbols(Binary.getBinary()->getImage(),
Binary.getBinary()->getOffloadKind(), IsArchive, Saver,
Syms[Binary]);
if (!ExtractOrErr)
return ExtractOrErr.takeError();
Extracted = !WholeArchive && *ExtractOrErr;
if (!IsArchive || WholeArchive || Extracted)
InputFiles.emplace_back(std::move(Binary));
// If we extracted any files we need to check all the symbols again.
if (Extracted)
break;
}
}
}
for (StringRef Library : Args.getAllArgValues(OPT_bitcode_library_EQ)) {
auto FileOrErr = getInputBitcodeLibrary(Library);
if (!FileOrErr)
return FileOrErr.takeError();
InputFiles.push_back(std::move(*FileOrErr));
}
return std::move(InputFiles);
}
} // namespace
int main(int Argc, char **Argv) {
InitLLVM X(Argc, Argv);
InitializeAllTargetInfos();
InitializeAllTargets();
InitializeAllTargetMCs();
InitializeAllAsmParsers();
InitializeAllAsmPrinters();
LinkerExecutable = Argv[0];
sys::PrintStackTraceOnErrorSignal(Argv[0]);
const OptTable &Tbl = getOptTable();
BumpPtrAllocator Alloc;
StringSaver Saver(Alloc);
auto Args = Tbl.parseArgs(Argc, Argv, OPT_INVALID, Saver, [&](StringRef Err) {
reportError(createStringError(inconvertibleErrorCode(), Err));
});
if (Args.hasArg(OPT_help) || Args.hasArg(OPT_help_hidden)) {
Tbl.printHelp(
outs(),
"clang-linker-wrapper [options] -- <options to passed to the linker>",
"\nA wrapper utility over the host linker. It scans the input files\n"
"for sections that require additional processing prior to linking.\n"
"The will then transparently pass all arguments and input to the\n"
"specified host linker to create the final binary.\n",
Args.hasArg(OPT_help_hidden), Args.hasArg(OPT_help_hidden));
return EXIT_SUCCESS;
}
if (Args.hasArg(OPT_v)) {
printVersion(outs());
return EXIT_SUCCESS;
}
// This forwards '-mllvm' arguments to LLVM if present.
SmallVector<const char *> NewArgv = {Argv[0]};
for (const opt::Arg *Arg : Args.filtered(OPT_mllvm))
NewArgv.push_back(Arg->getValue());
for (const opt::Arg *Arg : Args.filtered(OPT_offload_opt_eq_minus))
NewArgv.push_back(Args.MakeArgString(StringRef("-") + Arg->getValue()));
cl::ParseCommandLineOptions(NewArgv.size(), &NewArgv[0]);
Verbose = Args.hasArg(OPT_verbose);
DryRun = Args.hasArg(OPT_dry_run);
SaveTemps = Args.hasArg(OPT_save_temps);
ExecutableName = Args.getLastArgValue(OPT_o, "a.out");
CudaBinaryPath = Args.getLastArgValue(OPT_cuda_path_EQ).str();
parallel::strategy = hardware_concurrency(1);
if (auto *Arg = Args.getLastArg(OPT_wrapper_jobs)) {
unsigned Threads = 0;
if (!llvm::to_integer(Arg->getValue(), Threads) || Threads == 0)
reportError(createStringError(
inconvertibleErrorCode(), "%s: expected a positive integer, got '%s'",
Arg->getSpelling().data(), Arg->getValue()));
parallel::strategy = hardware_concurrency(Threads);
}
if (Args.hasArg(OPT_wrapper_time_trace_eq)) {
unsigned Granularity;
Args.getLastArgValue(OPT_wrapper_time_trace_granularity, "500")
.getAsInteger(10, Granularity);
timeTraceProfilerInitialize(Granularity, Argv[0]);
}
{
llvm::TimeTraceScope TimeScope("Execute linker wrapper");
// Extract the device input files stored in the host fat binary.
auto DeviceInputFiles = getDeviceInput(Args);
if (!DeviceInputFiles)
reportError(DeviceInputFiles.takeError());
// Link and wrap the device images extracted from the linker input.
auto FilesOrErr =
linkAndWrapDeviceFiles(*DeviceInputFiles, Args, Argv, Argc);
if (!FilesOrErr)
reportError(FilesOrErr.takeError());
// Run the host linking job with the rendered arguments.
if (Error Err = runLinker(*FilesOrErr, Args))
reportError(std::move(Err));
}
if (const opt::Arg *Arg = Args.getLastArg(OPT_wrapper_time_trace_eq)) {
if (Error Err = timeTraceProfilerWrite(Arg->getValue(), ExecutableName))
reportError(std::move(Err));
timeTraceProfilerCleanup();
}
// Remove the temporary files created.
if (!SaveTemps)
for (const auto &TempFile : TempFiles)
if (std::error_code EC = sys::fs::remove(TempFile))
reportError(createFileError(TempFile, EC));
return EXIT_SUCCESS;
}
|