1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
"""Utilities for enumeration of finite and countably infinite sets.
"""
from __future__ import absolute_import, division, print_function
###
# Countable iteration
# Simplifies some calculations
class Aleph0(int):
_singleton = None
def __new__(type):
if type._singleton is None:
type._singleton = int.__new__(type)
return type._singleton
def __repr__(self):
return "<aleph0>"
def __str__(self):
return "inf"
def __cmp__(self, b):
return 1
def __sub__(self, b):
raise ValueError("Cannot subtract aleph0")
__rsub__ = __sub__
def __add__(self, b):
return self
__radd__ = __add__
def __mul__(self, b):
if b == 0:
return b
return self
__rmul__ = __mul__
def __floordiv__(self, b):
if b == 0:
raise ZeroDivisionError
return self
__rfloordiv__ = __floordiv__
__truediv__ = __floordiv__
__rtuediv__ = __floordiv__
__div__ = __floordiv__
__rdiv__ = __floordiv__
def __pow__(self, b):
if b == 0:
return 1
return self
aleph0 = Aleph0()
def base(line):
return line * (line + 1) // 2
def pairToN(pair):
x, y = pair
line, index = x + y, y
return base(line) + index
def getNthPairInfo(N):
# Avoid various singularities
if N == 0:
return (0, 0)
# Gallop to find bounds for line
line = 1
next = 2
while base(next) <= N:
line = next
next = line << 1
# Binary search for starting line
lo = line
hi = line << 1
while lo + 1 != hi:
# assert base(lo) <= N < base(hi)
mid = (lo + hi) >> 1
if base(mid) <= N:
lo = mid
else:
hi = mid
line = lo
return line, N - base(line)
def getNthPair(N):
line, index = getNthPairInfo(N)
return (line - index, index)
def getNthPairBounded(N, W=aleph0, H=aleph0, useDivmod=False):
"""getNthPairBounded(N, W, H) -> (x, y)
Return the N-th pair such that 0 <= x < W and 0 <= y < H."""
if W <= 0 or H <= 0:
raise ValueError("Invalid bounds")
elif N >= W * H:
raise ValueError("Invalid input (out of bounds)")
# Simple case...
if W is aleph0 and H is aleph0:
return getNthPair(N)
# Otherwise simplify by assuming W < H
if H < W:
x, y = getNthPairBounded(N, H, W, useDivmod=useDivmod)
return y, x
if useDivmod:
return N % W, N // W
else:
# Conceptually we want to slide a diagonal line across a
# rectangle. This gives more interesting results for large
# bounds than using divmod.
# If in lower left, just return as usual
cornerSize = base(W)
if N < cornerSize:
return getNthPair(N)
# Otherwise if in upper right, subtract from corner
if H is not aleph0:
M = W * H - N - 1
if M < cornerSize:
x, y = getNthPair(M)
return (W - 1 - x, H - 1 - y)
# Otherwise, compile line and index from number of times we
# wrap.
N = N - cornerSize
index, offset = N % W, N // W
# p = (W-1, 1+offset) + (-1,1)*index
return (W - 1 - index, 1 + offset + index)
def getNthPairBoundedChecked(
N, W=aleph0, H=aleph0, useDivmod=False, GNP=getNthPairBounded
):
x, y = GNP(N, W, H, useDivmod)
assert 0 <= x < W and 0 <= y < H
return x, y
def getNthNTuple(N, W, H=aleph0, useLeftToRight=False):
"""getNthNTuple(N, W, H) -> (x_0, x_1, ..., x_W)
Return the N-th W-tuple, where for 0 <= x_i < H."""
if useLeftToRight:
elts = [None] * W
for i in range(W):
elts[i], N = getNthPairBounded(N, H)
return tuple(elts)
else:
if W == 0:
return ()
elif W == 1:
return (N,)
elif W == 2:
return getNthPairBounded(N, H, H)
else:
LW, RW = W // 2, W - (W // 2)
L, R = getNthPairBounded(N, H**LW, H**RW)
return getNthNTuple(
L, LW, H=H, useLeftToRight=useLeftToRight
) + getNthNTuple(R, RW, H=H, useLeftToRight=useLeftToRight)
def getNthNTupleChecked(N, W, H=aleph0, useLeftToRight=False, GNT=getNthNTuple):
t = GNT(N, W, H, useLeftToRight)
assert len(t) == W
for i in t:
assert i < H
return t
def getNthTuple(
N, maxSize=aleph0, maxElement=aleph0, useDivmod=False, useLeftToRight=False
):
"""getNthTuple(N, maxSize, maxElement) -> x
Return the N-th tuple where len(x) < maxSize and for y in x, 0 <=
y < maxElement."""
# All zero sized tuples are isomorphic, don't ya know.
if N == 0:
return ()
N -= 1
if maxElement is not aleph0:
if maxSize is aleph0:
raise NotImplementedError("Max element size without max size unhandled")
bounds = [maxElement**i for i in range(1, maxSize + 1)]
S, M = getNthPairVariableBounds(N, bounds)
else:
S, M = getNthPairBounded(N, maxSize, useDivmod=useDivmod)
return getNthNTuple(M, S + 1, maxElement, useLeftToRight=useLeftToRight)
def getNthTupleChecked(
N,
maxSize=aleph0,
maxElement=aleph0,
useDivmod=False,
useLeftToRight=False,
GNT=getNthTuple,
):
# FIXME: maxsize is inclusive
t = GNT(N, maxSize, maxElement, useDivmod, useLeftToRight)
assert len(t) <= maxSize
for i in t:
assert i < maxElement
return t
def getNthPairVariableBounds(N, bounds):
"""getNthPairVariableBounds(N, bounds) -> (x, y)
Given a finite list of bounds (which may be finite or aleph0),
return the N-th pair such that 0 <= x < len(bounds) and 0 <= y <
bounds[x]."""
if not bounds:
raise ValueError("Invalid bounds")
if not (0 <= N < sum(bounds)):
raise ValueError("Invalid input (out of bounds)")
level = 0
active = list(range(len(bounds)))
active.sort(key=lambda i: bounds[i])
prevLevel = 0
for i, index in enumerate(active):
level = bounds[index]
W = len(active) - i
if level is aleph0:
H = aleph0
else:
H = level - prevLevel
levelSize = W * H
if N < levelSize: # Found the level
idelta, delta = getNthPairBounded(N, W, H)
return active[i + idelta], prevLevel + delta
else:
N -= levelSize
prevLevel = level
else:
raise RuntimError("Unexpected loop completion")
def getNthPairVariableBoundsChecked(N, bounds, GNVP=getNthPairVariableBounds):
x, y = GNVP(N, bounds)
assert 0 <= x < len(bounds) and 0 <= y < bounds[x]
return (x, y)
###
def testPairs():
W = 3
H = 6
a = [[" " for x in range(10)] for y in range(10)]
b = [[" " for x in range(10)] for y in range(10)]
for i in range(min(W * H, 40)):
x, y = getNthPairBounded(i, W, H)
x2, y2 = getNthPairBounded(i, W, H, useDivmod=True)
print(i, (x, y), (x2, y2))
a[y][x] = "%2d" % i
b[y2][x2] = "%2d" % i
print("-- a --")
for ln in a[::-1]:
if "".join(ln).strip():
print(" ".join(ln))
print("-- b --")
for ln in b[::-1]:
if "".join(ln).strip():
print(" ".join(ln))
def testPairsVB():
bounds = [2, 2, 4, aleph0, 5, aleph0]
a = [[" " for x in range(15)] for y in range(15)]
b = [[" " for x in range(15)] for y in range(15)]
for i in range(min(sum(bounds), 40)):
x, y = getNthPairVariableBounds(i, bounds)
print(i, (x, y))
a[y][x] = "%2d" % i
print("-- a --")
for ln in a[::-1]:
if "".join(ln).strip():
print(" ".join(ln))
###
# Toggle to use checked versions of enumeration routines.
if False:
getNthPairVariableBounds = getNthPairVariableBoundsChecked
getNthPairBounded = getNthPairBoundedChecked
getNthNTuple = getNthNTupleChecked
getNthTuple = getNthTupleChecked
if __name__ == "__main__":
testPairs()
testPairsVB()
|