1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
"""Flexible enumeration of C types."""
from __future__ import division, print_function
from Enumeration import *
# TODO:
# - struct improvements (flexible arrays, packed &
# unpacked, alignment)
# - objective-c qualified id
# - anonymous / transparent unions
# - VLAs
# - block types
# - K&R functions
# - pass arguments of different types (test extension, transparent union)
# - varargs
###
# Actual type types
class Type(object):
def isBitField(self):
return False
def isPaddingBitField(self):
return False
def getTypeName(self, printer):
name = "T%d" % len(printer.types)
typedef = self.getTypedefDef(name, printer)
printer.addDeclaration(typedef)
return name
class BuiltinType(Type):
def __init__(self, name, size, bitFieldSize=None):
self.name = name
self.size = size
self.bitFieldSize = bitFieldSize
def isBitField(self):
return self.bitFieldSize is not None
def isPaddingBitField(self):
return self.bitFieldSize is 0
def getBitFieldSize(self):
assert self.isBitField()
return self.bitFieldSize
def getTypeName(self, printer):
return self.name
def sizeof(self):
return self.size
def __str__(self):
return self.name
class EnumType(Type):
unique_id = 0
def __init__(self, index, enumerators):
self.index = index
self.enumerators = enumerators
self.unique_id = self.__class__.unique_id
self.__class__.unique_id += 1
def getEnumerators(self):
result = ""
for i, init in enumerate(self.enumerators):
if i > 0:
result = result + ", "
result = result + "enum%dval%d_%d" % (self.index, i, self.unique_id)
if init:
result = result + " = %s" % (init)
return result
def __str__(self):
return "enum { %s }" % (self.getEnumerators())
def getTypedefDef(self, name, printer):
return "typedef enum %s { %s } %s;" % (name, self.getEnumerators(), name)
class RecordType(Type):
def __init__(self, index, isUnion, fields):
self.index = index
self.isUnion = isUnion
self.fields = fields
self.name = None
def __str__(self):
def getField(t):
if t.isBitField():
return "%s : %d;" % (t, t.getBitFieldSize())
else:
return "%s;" % t
return "%s { %s }" % (
("struct", "union")[self.isUnion],
" ".join(map(getField, self.fields)),
)
def getTypedefDef(self, name, printer):
def getField(it):
i, t = it
if t.isBitField():
if t.isPaddingBitField():
return "%s : 0;" % (printer.getTypeName(t),)
else:
return "%s field%d : %d;" % (
printer.getTypeName(t),
i,
t.getBitFieldSize(),
)
else:
return "%s field%d;" % (printer.getTypeName(t), i)
fields = [getField(f) for f in enumerate(self.fields)]
# Name the struct for more readable LLVM IR.
return "typedef %s %s { %s } %s;" % (
("struct", "union")[self.isUnion],
name,
" ".join(fields),
name,
)
class ArrayType(Type):
def __init__(self, index, isVector, elementType, size):
if isVector:
# Note that for vectors, this is the size in bytes.
assert size > 0
else:
assert size is None or size >= 0
self.index = index
self.isVector = isVector
self.elementType = elementType
self.size = size
if isVector:
eltSize = self.elementType.sizeof()
assert not (self.size % eltSize)
self.numElements = self.size // eltSize
else:
self.numElements = self.size
def __str__(self):
if self.isVector:
return "vector (%s)[%d]" % (self.elementType, self.size)
elif self.size is not None:
return "(%s)[%d]" % (self.elementType, self.size)
else:
return "(%s)[]" % (self.elementType,)
def getTypedefDef(self, name, printer):
elementName = printer.getTypeName(self.elementType)
if self.isVector:
return "typedef %s %s __attribute__ ((vector_size (%d)));" % (
elementName,
name,
self.size,
)
else:
if self.size is None:
sizeStr = ""
else:
sizeStr = str(self.size)
return "typedef %s %s[%s];" % (elementName, name, sizeStr)
class ComplexType(Type):
def __init__(self, index, elementType):
self.index = index
self.elementType = elementType
def __str__(self):
return "_Complex (%s)" % (self.elementType)
def getTypedefDef(self, name, printer):
return "typedef _Complex %s %s;" % (printer.getTypeName(self.elementType), name)
class FunctionType(Type):
def __init__(self, index, returnType, argTypes):
self.index = index
self.returnType = returnType
self.argTypes = argTypes
def __str__(self):
if self.returnType is None:
rt = "void"
else:
rt = str(self.returnType)
if not self.argTypes:
at = "void"
else:
at = ", ".join(map(str, self.argTypes))
return "%s (*)(%s)" % (rt, at)
def getTypedefDef(self, name, printer):
if self.returnType is None:
rt = "void"
else:
rt = str(self.returnType)
if not self.argTypes:
at = "void"
else:
at = ", ".join(map(str, self.argTypes))
return "typedef %s (*%s)(%s);" % (rt, name, at)
###
# Type enumerators
class TypeGenerator(object):
def __init__(self):
self.cache = {}
def setCardinality(self):
abstract
def get(self, N):
T = self.cache.get(N)
if T is None:
assert 0 <= N < self.cardinality
T = self.cache[N] = self.generateType(N)
return T
def generateType(self, N):
abstract
class FixedTypeGenerator(TypeGenerator):
def __init__(self, types):
TypeGenerator.__init__(self)
self.types = types
self.setCardinality()
def setCardinality(self):
self.cardinality = len(self.types)
def generateType(self, N):
return self.types[N]
# Factorial
def fact(n):
result = 1
while n > 0:
result = result * n
n = n - 1
return result
# Compute the number of combinations (n choose k)
def num_combinations(n, k):
return fact(n) // (fact(k) * fact(n - k))
# Enumerate the combinations choosing k elements from the list of values
def combinations(values, k):
# From ActiveState Recipe 190465: Generator for permutations,
# combinations, selections of a sequence
if k == 0:
yield []
else:
for i in range(len(values) - k + 1):
for cc in combinations(values[i + 1 :], k - 1):
yield [values[i]] + cc
class EnumTypeGenerator(TypeGenerator):
def __init__(self, values, minEnumerators, maxEnumerators):
TypeGenerator.__init__(self)
self.values = values
self.minEnumerators = minEnumerators
self.maxEnumerators = maxEnumerators
self.setCardinality()
def setCardinality(self):
self.cardinality = 0
for num in range(self.minEnumerators, self.maxEnumerators + 1):
self.cardinality += num_combinations(len(self.values), num)
def generateType(self, n):
# Figure out the number of enumerators in this type
numEnumerators = self.minEnumerators
valuesCovered = 0
while numEnumerators < self.maxEnumerators:
comb = num_combinations(len(self.values), numEnumerators)
if valuesCovered + comb > n:
break
numEnumerators = numEnumerators + 1
valuesCovered += comb
# Find the requested combination of enumerators and build a
# type from it.
i = 0
for enumerators in combinations(self.values, numEnumerators):
if i == n - valuesCovered:
return EnumType(n, enumerators)
i = i + 1
assert False
class ComplexTypeGenerator(TypeGenerator):
def __init__(self, typeGen):
TypeGenerator.__init__(self)
self.typeGen = typeGen
self.setCardinality()
def setCardinality(self):
self.cardinality = self.typeGen.cardinality
def generateType(self, N):
return ComplexType(N, self.typeGen.get(N))
class VectorTypeGenerator(TypeGenerator):
def __init__(self, typeGen, sizes):
TypeGenerator.__init__(self)
self.typeGen = typeGen
self.sizes = tuple(map(int, sizes))
self.setCardinality()
def setCardinality(self):
self.cardinality = len(self.sizes) * self.typeGen.cardinality
def generateType(self, N):
S, T = getNthPairBounded(N, len(self.sizes), self.typeGen.cardinality)
return ArrayType(N, True, self.typeGen.get(T), self.sizes[S])
class FixedArrayTypeGenerator(TypeGenerator):
def __init__(self, typeGen, sizes):
TypeGenerator.__init__(self)
self.typeGen = typeGen
self.sizes = tuple(size)
self.setCardinality()
def setCardinality(self):
self.cardinality = len(self.sizes) * self.typeGen.cardinality
def generateType(self, N):
S, T = getNthPairBounded(N, len(self.sizes), self.typeGen.cardinality)
return ArrayType(N, false, self.typeGen.get(T), self.sizes[S])
class ArrayTypeGenerator(TypeGenerator):
def __init__(self, typeGen, maxSize, useIncomplete=False, useZero=False):
TypeGenerator.__init__(self)
self.typeGen = typeGen
self.useIncomplete = useIncomplete
self.useZero = useZero
self.maxSize = int(maxSize)
self.W = useIncomplete + useZero + self.maxSize
self.setCardinality()
def setCardinality(self):
self.cardinality = self.W * self.typeGen.cardinality
def generateType(self, N):
S, T = getNthPairBounded(N, self.W, self.typeGen.cardinality)
if self.useIncomplete:
if S == 0:
size = None
S = None
else:
S = S - 1
if S is not None:
if self.useZero:
size = S
else:
size = S + 1
return ArrayType(N, False, self.typeGen.get(T), size)
class RecordTypeGenerator(TypeGenerator):
def __init__(self, typeGen, useUnion, maxSize):
TypeGenerator.__init__(self)
self.typeGen = typeGen
self.useUnion = bool(useUnion)
self.maxSize = int(maxSize)
self.setCardinality()
def setCardinality(self):
M = 1 + self.useUnion
if self.maxSize is aleph0:
S = aleph0 * self.typeGen.cardinality
else:
S = 0
for i in range(self.maxSize + 1):
S += M * (self.typeGen.cardinality**i)
self.cardinality = S
def generateType(self, N):
isUnion, I = False, N
if self.useUnion:
isUnion, I = (I & 1), I >> 1
fields = [
self.typeGen.get(f)
for f in getNthTuple(I, self.maxSize, self.typeGen.cardinality)
]
return RecordType(N, isUnion, fields)
class FunctionTypeGenerator(TypeGenerator):
def __init__(self, typeGen, useReturn, maxSize):
TypeGenerator.__init__(self)
self.typeGen = typeGen
self.useReturn = useReturn
self.maxSize = maxSize
self.setCardinality()
def setCardinality(self):
if self.maxSize is aleph0:
S = aleph0 * self.typeGen.cardinality()
elif self.useReturn:
S = 0
for i in range(1, self.maxSize + 1 + 1):
S += self.typeGen.cardinality**i
else:
S = 0
for i in range(self.maxSize + 1):
S += self.typeGen.cardinality**i
self.cardinality = S
def generateType(self, N):
if self.useReturn:
# Skip the empty tuple
argIndices = getNthTuple(N + 1, self.maxSize + 1, self.typeGen.cardinality)
retIndex, argIndices = argIndices[0], argIndices[1:]
retTy = self.typeGen.get(retIndex)
else:
retTy = None
argIndices = getNthTuple(N, self.maxSize, self.typeGen.cardinality)
args = [self.typeGen.get(i) for i in argIndices]
return FunctionType(N, retTy, args)
class AnyTypeGenerator(TypeGenerator):
def __init__(self):
TypeGenerator.__init__(self)
self.generators = []
self.bounds = []
self.setCardinality()
self._cardinality = None
def getCardinality(self):
if self._cardinality is None:
return aleph0
else:
return self._cardinality
def setCardinality(self):
self.bounds = [g.cardinality for g in self.generators]
self._cardinality = sum(self.bounds)
cardinality = property(getCardinality, None)
def addGenerator(self, g):
self.generators.append(g)
for i in range(100):
prev = self._cardinality
self._cardinality = None
for g in self.generators:
g.setCardinality()
self.setCardinality()
if (self._cardinality is aleph0) or prev == self._cardinality:
break
else:
raise RuntimeError("Infinite loop in setting cardinality")
def generateType(self, N):
index, M = getNthPairVariableBounds(N, self.bounds)
return self.generators[index].get(M)
def test():
fbtg = FixedTypeGenerator(
[BuiltinType("char", 4), BuiltinType("char", 4, 0), BuiltinType("int", 4, 5)]
)
fields1 = AnyTypeGenerator()
fields1.addGenerator(fbtg)
fields0 = AnyTypeGenerator()
fields0.addGenerator(fbtg)
# fields0.addGenerator( RecordTypeGenerator(fields1, False, 4) )
btg = FixedTypeGenerator([BuiltinType("char", 4), BuiltinType("int", 4)])
etg = EnumTypeGenerator([None, "-1", "1", "1u"], 0, 3)
atg = AnyTypeGenerator()
atg.addGenerator(btg)
atg.addGenerator(RecordTypeGenerator(fields0, False, 4))
atg.addGenerator(etg)
print("Cardinality:", atg.cardinality)
for i in range(100):
if i == atg.cardinality:
try:
atg.get(i)
raise RuntimeError("Cardinality was wrong")
except AssertionError:
break
print("%4d: %s" % (i, atg.get(i)))
if __name__ == "__main__":
test()
|