1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
|
//===-- primary32.h ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_PRIMARY32_H_
#define SCUDO_PRIMARY32_H_
#include "bytemap.h"
#include "common.h"
#include "list.h"
#include "local_cache.h"
#include "options.h"
#include "release.h"
#include "report.h"
#include "stats.h"
#include "string_utils.h"
#include "thread_annotations.h"
namespace scudo {
// SizeClassAllocator32 is an allocator for 32 or 64-bit address space.
//
// It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes
// boundary, and keeps a bytemap of the mappable address space to track the size
// class they are associated with.
//
// Mapped regions are split into equally sized Blocks according to the size
// class they belong to, and the associated pointers are shuffled to prevent any
// predictable address pattern (the predictability increases with the block
// size).
//
// Regions for size class 0 are special and used to hold TransferBatches, which
// allow to transfer arrays of pointers from the global size class freelist to
// the thread specific freelist for said class, and back.
//
// Memory used by this allocator is never unmapped but can be partially
// reclaimed if the platform allows for it.
template <typename Config> class SizeClassAllocator32 {
public:
typedef typename Config::Primary::CompactPtrT CompactPtrT;
typedef typename Config::Primary::SizeClassMap SizeClassMap;
static const uptr GroupSizeLog = Config::Primary::GroupSizeLog;
// The bytemap can only track UINT8_MAX - 1 classes.
static_assert(SizeClassMap::LargestClassId <= (UINT8_MAX - 1), "");
// Regions should be large enough to hold the largest Block.
static_assert((1UL << Config::Primary::RegionSizeLog) >=
SizeClassMap::MaxSize,
"");
typedef SizeClassAllocator32<Config> ThisT;
typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
typedef typename CacheT::TransferBatch TransferBatch;
typedef typename CacheT::BatchGroup BatchGroup;
static uptr getSizeByClassId(uptr ClassId) {
return (ClassId == SizeClassMap::BatchClassId)
? sizeof(TransferBatch)
: SizeClassMap::getSizeByClassId(ClassId);
}
static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }
void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS {
if (SCUDO_FUCHSIA)
reportError("SizeClassAllocator32 is not supported on Fuchsia");
if (SCUDO_TRUSTY)
reportError("SizeClassAllocator32 is not supported on Trusty");
DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT)));
PossibleRegions.init();
u32 Seed;
const u64 Time = getMonotonicTimeFast();
if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed)))
Seed = static_cast<u32>(
Time ^ (reinterpret_cast<uptr>(SizeClassInfoArray) >> 6));
for (uptr I = 0; I < NumClasses; I++) {
SizeClassInfo *Sci = getSizeClassInfo(I);
Sci->RandState = getRandomU32(&Seed);
// Sci->MaxRegionIndex is already initialized to 0.
Sci->MinRegionIndex = NumRegions;
Sci->ReleaseInfo.LastReleaseAtNs = Time;
}
setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
}
void unmapTestOnly() {
{
ScopedLock L(RegionsStashMutex);
while (NumberOfStashedRegions > 0) {
unmap(reinterpret_cast<void *>(RegionsStash[--NumberOfStashedRegions]),
RegionSize);
}
}
uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
for (uptr I = 0; I < NumClasses; I++) {
SizeClassInfo *Sci = getSizeClassInfo(I);
ScopedLock L(Sci->Mutex);
if (Sci->MinRegionIndex < MinRegionIndex)
MinRegionIndex = Sci->MinRegionIndex;
if (Sci->MaxRegionIndex > MaxRegionIndex)
MaxRegionIndex = Sci->MaxRegionIndex;
*Sci = {};
}
ScopedLock L(ByteMapMutex);
for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++)
if (PossibleRegions[I])
unmap(reinterpret_cast<void *>(I * RegionSize), RegionSize);
PossibleRegions.unmapTestOnly();
}
// When all blocks are freed, it has to be the same size as `AllocatedUser`.
void verifyAllBlocksAreReleasedTestOnly() {
// `BatchGroup` and `TransferBatch` also use the blocks from BatchClass.
uptr BatchClassUsedInFreeLists = 0;
for (uptr I = 0; I < NumClasses; I++) {
// We have to count BatchClassUsedInFreeLists in other regions first.
if (I == SizeClassMap::BatchClassId)
continue;
SizeClassInfo *Sci = getSizeClassInfo(I);
ScopedLock L1(Sci->Mutex);
uptr TotalBlocks = 0;
for (BatchGroup &BG : Sci->FreeListInfo.BlockList) {
// `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`.
BatchClassUsedInFreeLists += BG.Batches.size() + 1;
for (const auto &It : BG.Batches)
TotalBlocks += It.getCount();
}
const uptr BlockSize = getSizeByClassId(I);
DCHECK_EQ(TotalBlocks, Sci->AllocatedUser / BlockSize);
DCHECK_EQ(Sci->FreeListInfo.PushedBlocks, Sci->FreeListInfo.PoppedBlocks);
}
SizeClassInfo *Sci = getSizeClassInfo(SizeClassMap::BatchClassId);
ScopedLock L1(Sci->Mutex);
uptr TotalBlocks = 0;
for (BatchGroup &BG : Sci->FreeListInfo.BlockList) {
if (LIKELY(!BG.Batches.empty())) {
for (const auto &It : BG.Batches)
TotalBlocks += It.getCount();
} else {
// `BatchGroup` with empty freelist doesn't have `TransferBatch` record
// itself.
++TotalBlocks;
}
}
const uptr BlockSize = getSizeByClassId(SizeClassMap::BatchClassId);
DCHECK_EQ(TotalBlocks + BatchClassUsedInFreeLists,
Sci->AllocatedUser / BlockSize);
const uptr BlocksInUse =
Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
DCHECK_EQ(BlocksInUse, BatchClassUsedInFreeLists);
}
CompactPtrT compactPtr(UNUSED uptr ClassId, uptr Ptr) const {
return static_cast<CompactPtrT>(Ptr);
}
void *decompactPtr(UNUSED uptr ClassId, CompactPtrT CompactPtr) const {
return reinterpret_cast<void *>(static_cast<uptr>(CompactPtr));
}
uptr compactPtrGroupBase(CompactPtrT CompactPtr) {
const uptr Mask = (static_cast<uptr>(1) << GroupSizeLog) - 1;
return CompactPtr & ~Mask;
}
uptr decompactGroupBase(uptr CompactPtrGroupBase) {
return CompactPtrGroupBase;
}
ALWAYS_INLINE static bool isSmallBlock(uptr BlockSize) {
const uptr PageSize = getPageSizeCached();
return BlockSize < PageSize / 16U;
}
ALWAYS_INLINE static bool isLargeBlock(uptr BlockSize) {
const uptr PageSize = getPageSizeCached();
return BlockSize > PageSize;
}
TransferBatch *popBatch(CacheT *C, uptr ClassId) {
DCHECK_LT(ClassId, NumClasses);
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
ScopedLock L(Sci->Mutex);
TransferBatch *B = popBatchImpl(C, ClassId, Sci);
if (UNLIKELY(!B)) {
if (UNLIKELY(!populateFreeList(C, ClassId, Sci)))
return nullptr;
B = popBatchImpl(C, ClassId, Sci);
// if `populateFreeList` succeeded, we are supposed to get free blocks.
DCHECK_NE(B, nullptr);
}
return B;
}
// Push the array of free blocks to the designated batch group.
void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) {
DCHECK_LT(ClassId, NumClasses);
DCHECK_GT(Size, 0);
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
if (ClassId == SizeClassMap::BatchClassId) {
ScopedLock L(Sci->Mutex);
pushBatchClassBlocks(Sci, Array, Size);
return;
}
// TODO(chiahungduan): Consider not doing grouping if the group size is not
// greater than the block size with a certain scale.
// Sort the blocks so that blocks belonging to the same group can be pushed
// together.
bool SameGroup = true;
for (u32 I = 1; I < Size; ++I) {
if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I]))
SameGroup = false;
CompactPtrT Cur = Array[I];
u32 J = I;
while (J > 0 &&
compactPtrGroupBase(Cur) < compactPtrGroupBase(Array[J - 1])) {
Array[J] = Array[J - 1];
--J;
}
Array[J] = Cur;
}
ScopedLock L(Sci->Mutex);
pushBlocksImpl(C, ClassId, Sci, Array, Size, SameGroup);
}
void disable() NO_THREAD_SAFETY_ANALYSIS {
// The BatchClassId must be locked last since other classes can use it.
for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
continue;
getSizeClassInfo(static_cast<uptr>(I))->Mutex.lock();
}
getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.lock();
RegionsStashMutex.lock();
ByteMapMutex.lock();
}
void enable() NO_THREAD_SAFETY_ANALYSIS {
ByteMapMutex.unlock();
RegionsStashMutex.unlock();
getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.unlock();
for (uptr I = 0; I < NumClasses; I++) {
if (I == SizeClassMap::BatchClassId)
continue;
getSizeClassInfo(I)->Mutex.unlock();
}
}
template <typename F> void iterateOverBlocks(F Callback) {
uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
for (uptr I = 0; I < NumClasses; I++) {
SizeClassInfo *Sci = getSizeClassInfo(I);
// TODO: The call of `iterateOverBlocks` requires disabling
// SizeClassAllocator32. We may consider locking each region on demand
// only.
Sci->Mutex.assertHeld();
if (Sci->MinRegionIndex < MinRegionIndex)
MinRegionIndex = Sci->MinRegionIndex;
if (Sci->MaxRegionIndex > MaxRegionIndex)
MaxRegionIndex = Sci->MaxRegionIndex;
}
// SizeClassAllocator32 is disabled, i.e., ByteMapMutex is held.
ByteMapMutex.assertHeld();
for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) {
if (PossibleRegions[I] &&
(PossibleRegions[I] - 1U) != SizeClassMap::BatchClassId) {
const uptr BlockSize = getSizeByClassId(PossibleRegions[I] - 1U);
const uptr From = I * RegionSize;
const uptr To = From + (RegionSize / BlockSize) * BlockSize;
for (uptr Block = From; Block < To; Block += BlockSize)
Callback(Block);
}
}
}
void getStats(ScopedString *Str) {
// TODO(kostyak): get the RSS per region.
uptr TotalMapped = 0;
uptr PoppedBlocks = 0;
uptr PushedBlocks = 0;
for (uptr I = 0; I < NumClasses; I++) {
SizeClassInfo *Sci = getSizeClassInfo(I);
ScopedLock L(Sci->Mutex);
TotalMapped += Sci->AllocatedUser;
PoppedBlocks += Sci->FreeListInfo.PoppedBlocks;
PushedBlocks += Sci->FreeListInfo.PushedBlocks;
}
Str->append("Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; "
"remains %zu\n",
TotalMapped >> 20, PoppedBlocks, PoppedBlocks - PushedBlocks);
for (uptr I = 0; I < NumClasses; I++) {
SizeClassInfo *Sci = getSizeClassInfo(I);
ScopedLock L(Sci->Mutex);
getStats(Str, I, Sci);
}
}
bool setOption(Option O, sptr Value) {
if (O == Option::ReleaseInterval) {
const s32 Interval = Max(Min(static_cast<s32>(Value),
Config::Primary::MaxReleaseToOsIntervalMs),
Config::Primary::MinReleaseToOsIntervalMs);
atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
return true;
}
// Not supported by the Primary, but not an error either.
return true;
}
uptr tryReleaseToOS(uptr ClassId, ReleaseToOS ReleaseType) {
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
// TODO: Once we have separate locks like primary64, we may consider using
// tryLock() as well.
ScopedLock L(Sci->Mutex);
return releaseToOSMaybe(Sci, ClassId, ReleaseType);
}
uptr releaseToOS(ReleaseToOS ReleaseType) {
uptr TotalReleasedBytes = 0;
for (uptr I = 0; I < NumClasses; I++) {
if (I == SizeClassMap::BatchClassId)
continue;
SizeClassInfo *Sci = getSizeClassInfo(I);
ScopedLock L(Sci->Mutex);
TotalReleasedBytes += releaseToOSMaybe(Sci, I, ReleaseType);
}
return TotalReleasedBytes;
}
const char *getRegionInfoArrayAddress() const { return nullptr; }
static uptr getRegionInfoArraySize() { return 0; }
static BlockInfo findNearestBlock(UNUSED const char *RegionInfoData,
UNUSED uptr Ptr) {
return {};
}
AtomicOptions Options;
private:
static const uptr NumClasses = SizeClassMap::NumClasses;
static const uptr RegionSize = 1UL << Config::Primary::RegionSizeLog;
static const uptr NumRegions =
SCUDO_MMAP_RANGE_SIZE >> Config::Primary::RegionSizeLog;
static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
typedef FlatByteMap<NumRegions> ByteMap;
struct ReleaseToOsInfo {
uptr BytesInFreeListAtLastCheckpoint;
uptr RangesReleased;
uptr LastReleasedBytes;
u64 LastReleaseAtNs;
};
struct BlocksInfo {
SinglyLinkedList<BatchGroup> BlockList = {};
uptr PoppedBlocks = 0;
uptr PushedBlocks = 0;
};
struct alignas(SCUDO_CACHE_LINE_SIZE) SizeClassInfo {
HybridMutex Mutex;
BlocksInfo FreeListInfo GUARDED_BY(Mutex);
uptr CurrentRegion GUARDED_BY(Mutex);
uptr CurrentRegionAllocated GUARDED_BY(Mutex);
u32 RandState;
uptr AllocatedUser GUARDED_BY(Mutex);
// Lowest & highest region index allocated for this size class, to avoid
// looping through the whole NumRegions.
uptr MinRegionIndex GUARDED_BY(Mutex);
uptr MaxRegionIndex GUARDED_BY(Mutex);
ReleaseToOsInfo ReleaseInfo GUARDED_BY(Mutex);
};
static_assert(sizeof(SizeClassInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");
uptr computeRegionId(uptr Mem) {
const uptr Id = Mem >> Config::Primary::RegionSizeLog;
CHECK_LT(Id, NumRegions);
return Id;
}
uptr allocateRegionSlow() {
uptr MapSize = 2 * RegionSize;
const uptr MapBase = reinterpret_cast<uptr>(
map(nullptr, MapSize, "scudo:primary", MAP_ALLOWNOMEM));
if (!MapBase)
return 0;
const uptr MapEnd = MapBase + MapSize;
uptr Region = MapBase;
if (isAligned(Region, RegionSize)) {
ScopedLock L(RegionsStashMutex);
if (NumberOfStashedRegions < MaxStashedRegions)
RegionsStash[NumberOfStashedRegions++] = MapBase + RegionSize;
else
MapSize = RegionSize;
} else {
Region = roundUp(MapBase, RegionSize);
unmap(reinterpret_cast<void *>(MapBase), Region - MapBase);
MapSize = RegionSize;
}
const uptr End = Region + MapSize;
if (End != MapEnd)
unmap(reinterpret_cast<void *>(End), MapEnd - End);
DCHECK_EQ(Region % RegionSize, 0U);
static_assert(Config::Primary::RegionSizeLog == GroupSizeLog,
"Memory group should be the same size as Region");
return Region;
}
uptr allocateRegion(SizeClassInfo *Sci, uptr ClassId) REQUIRES(Sci->Mutex) {
DCHECK_LT(ClassId, NumClasses);
uptr Region = 0;
{
ScopedLock L(RegionsStashMutex);
if (NumberOfStashedRegions > 0)
Region = RegionsStash[--NumberOfStashedRegions];
}
if (!Region)
Region = allocateRegionSlow();
if (LIKELY(Region)) {
// Sci->Mutex is held by the caller, updating the Min/Max is safe.
const uptr RegionIndex = computeRegionId(Region);
if (RegionIndex < Sci->MinRegionIndex)
Sci->MinRegionIndex = RegionIndex;
if (RegionIndex > Sci->MaxRegionIndex)
Sci->MaxRegionIndex = RegionIndex;
ScopedLock L(ByteMapMutex);
PossibleRegions.set(RegionIndex, static_cast<u8>(ClassId + 1U));
}
return Region;
}
SizeClassInfo *getSizeClassInfo(uptr ClassId) {
DCHECK_LT(ClassId, NumClasses);
return &SizeClassInfoArray[ClassId];
}
void pushBatchClassBlocks(SizeClassInfo *Sci, CompactPtrT *Array, u32 Size)
REQUIRES(Sci->Mutex) {
DCHECK_EQ(Sci, getSizeClassInfo(SizeClassMap::BatchClassId));
// Free blocks are recorded by TransferBatch in freelist for all
// size-classes. In addition, TransferBatch is allocated from BatchClassId.
// In order not to use additional block to record the free blocks in
// BatchClassId, they are self-contained. I.e., A TransferBatch records the
// block address of itself. See the figure below:
//
// TransferBatch at 0xABCD
// +----------------------------+
// | Free blocks' addr |
// | +------+------+------+ |
// | |0xABCD|... |... | |
// | +------+------+------+ |
// +----------------------------+
//
// When we allocate all the free blocks in the TransferBatch, the block used
// by TransferBatch is also free for use. We don't need to recycle the
// TransferBatch. Note that the correctness is maintained by the invariant,
//
// The unit of each popBatch() request is entire TransferBatch. Return
// part of the blocks in a TransferBatch is invalid.
//
// This ensures that TransferBatch won't leak the address itself while it's
// still holding other valid data.
//
// Besides, BatchGroup is also allocated from BatchClassId and has its
// address recorded in the TransferBatch too. To maintain the correctness,
//
// The address of BatchGroup is always recorded in the last TransferBatch
// in the freelist (also imply that the freelist should only be
// updated with push_front). Once the last TransferBatch is popped,
// the block used by BatchGroup is also free for use.
//
// With this approach, the blocks used by BatchGroup and TransferBatch are
// reusable and don't need additional space for them.
Sci->FreeListInfo.PushedBlocks += Size;
BatchGroup *BG = Sci->FreeListInfo.BlockList.front();
if (BG == nullptr) {
// Construct `BatchGroup` on the last element.
BG = reinterpret_cast<BatchGroup *>(
decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
--Size;
BG->Batches.clear();
// BatchClass hasn't enabled memory group. Use `0` to indicate there's no
// memory group here.
BG->CompactPtrGroupBase = 0;
// `BG` is also the block of BatchClassId. Note that this is different
// from `CreateGroup` in `pushBlocksImpl`
BG->PushedBlocks = 1;
BG->BytesInBGAtLastCheckpoint = 0;
BG->MaxCachedPerBatch = TransferBatch::getMaxCached(
getSizeByClassId(SizeClassMap::BatchClassId));
Sci->FreeListInfo.BlockList.push_front(BG);
}
if (UNLIKELY(Size == 0))
return;
// This happens under 2 cases.
// 1. just allocated a new `BatchGroup`.
// 2. Only 1 block is pushed when the freelist is empty.
if (BG->Batches.empty()) {
// Construct the `TransferBatch` on the last element.
TransferBatch *TB = reinterpret_cast<TransferBatch *>(
decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
TB->clear();
// As mentioned above, addresses of `TransferBatch` and `BatchGroup` are
// recorded in the TransferBatch.
TB->add(Array[Size - 1]);
TB->add(
compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(BG)));
--Size;
DCHECK_EQ(BG->PushedBlocks, 1U);
// `TB` is also the block of BatchClassId.
BG->PushedBlocks += 1;
BG->Batches.push_front(TB);
}
TransferBatch *CurBatch = BG->Batches.front();
DCHECK_NE(CurBatch, nullptr);
for (u32 I = 0; I < Size;) {
u16 UnusedSlots =
static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
if (UnusedSlots == 0) {
CurBatch = reinterpret_cast<TransferBatch *>(
decompactPtr(SizeClassMap::BatchClassId, Array[I]));
CurBatch->clear();
// Self-contained
CurBatch->add(Array[I]);
++I;
// TODO(chiahungduan): Avoid the use of push_back() in `Batches` of
// BatchClassId.
BG->Batches.push_front(CurBatch);
UnusedSlots = static_cast<u16>(BG->MaxCachedPerBatch - 1);
}
// `UnusedSlots` is u16 so the result will be also fit in u16.
const u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
CurBatch->appendFromArray(&Array[I], AppendSize);
I += AppendSize;
}
BG->PushedBlocks += Size;
}
// Push the blocks to their batch group. The layout will be like,
//
// FreeListInfo.BlockList - > BG -> BG -> BG
// | | |
// v v v
// TB TB TB
// |
// v
// TB
//
// Each BlockGroup(BG) will associate with unique group id and the free blocks
// are managed by a list of TransferBatch(TB). To reduce the time of inserting
// blocks, BGs are sorted and the input `Array` are supposed to be sorted so
// that we can get better performance of maintaining sorted property.
// Use `SameGroup=true` to indicate that all blocks in the array are from the
// same group then we will skip checking the group id of each block.
//
// The region mutex needs to be held while calling this method.
void pushBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci,
CompactPtrT *Array, u32 Size, bool SameGroup = false)
REQUIRES(Sci->Mutex) {
DCHECK_NE(ClassId, SizeClassMap::BatchClassId);
DCHECK_GT(Size, 0U);
auto CreateGroup = [&](uptr CompactPtrGroupBase) {
BatchGroup *BG = C->createGroup();
BG->Batches.clear();
TransferBatch *TB = C->createBatch(ClassId, nullptr);
TB->clear();
BG->CompactPtrGroupBase = CompactPtrGroupBase;
BG->Batches.push_front(TB);
BG->PushedBlocks = 0;
BG->BytesInBGAtLastCheckpoint = 0;
BG->MaxCachedPerBatch =
TransferBatch::getMaxCached(getSizeByClassId(ClassId));
return BG;
};
auto InsertBlocks = [&](BatchGroup *BG, CompactPtrT *Array, u32 Size) {
SinglyLinkedList<TransferBatch> &Batches = BG->Batches;
TransferBatch *CurBatch = Batches.front();
DCHECK_NE(CurBatch, nullptr);
for (u32 I = 0; I < Size;) {
DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount());
u16 UnusedSlots =
static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
if (UnusedSlots == 0) {
CurBatch = C->createBatch(
ClassId,
reinterpret_cast<void *>(decompactPtr(ClassId, Array[I])));
CurBatch->clear();
Batches.push_front(CurBatch);
UnusedSlots = BG->MaxCachedPerBatch;
}
// `UnusedSlots` is u16 so the result will be also fit in u16.
u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
CurBatch->appendFromArray(&Array[I], AppendSize);
I += AppendSize;
}
BG->PushedBlocks += Size;
};
Sci->FreeListInfo.PushedBlocks += Size;
BatchGroup *Cur = Sci->FreeListInfo.BlockList.front();
// In the following, `Cur` always points to the BatchGroup for blocks that
// will be pushed next. `Prev` is the element right before `Cur`.
BatchGroup *Prev = nullptr;
while (Cur != nullptr &&
compactPtrGroupBase(Array[0]) > Cur->CompactPtrGroupBase) {
Prev = Cur;
Cur = Cur->Next;
}
if (Cur == nullptr ||
compactPtrGroupBase(Array[0]) != Cur->CompactPtrGroupBase) {
Cur = CreateGroup(compactPtrGroupBase(Array[0]));
if (Prev == nullptr)
Sci->FreeListInfo.BlockList.push_front(Cur);
else
Sci->FreeListInfo.BlockList.insert(Prev, Cur);
}
// All the blocks are from the same group, just push without checking group
// id.
if (SameGroup) {
for (u32 I = 0; I < Size; ++I)
DCHECK_EQ(compactPtrGroupBase(Array[I]), Cur->CompactPtrGroupBase);
InsertBlocks(Cur, Array, Size);
return;
}
// The blocks are sorted by group id. Determine the segment of group and
// push them to their group together.
u32 Count = 1;
for (u32 I = 1; I < Size; ++I) {
if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I])) {
DCHECK_EQ(compactPtrGroupBase(Array[I - 1]), Cur->CompactPtrGroupBase);
InsertBlocks(Cur, Array + I - Count, Count);
while (Cur != nullptr &&
compactPtrGroupBase(Array[I]) > Cur->CompactPtrGroupBase) {
Prev = Cur;
Cur = Cur->Next;
}
if (Cur == nullptr ||
compactPtrGroupBase(Array[I]) != Cur->CompactPtrGroupBase) {
Cur = CreateGroup(compactPtrGroupBase(Array[I]));
DCHECK_NE(Prev, nullptr);
Sci->FreeListInfo.BlockList.insert(Prev, Cur);
}
Count = 1;
} else {
++Count;
}
}
InsertBlocks(Cur, Array + Size - Count, Count);
}
// Pop one TransferBatch from a BatchGroup. The BatchGroup with the smallest
// group id will be considered first.
//
// The region mutex needs to be held while calling this method.
TransferBatch *popBatchImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci)
REQUIRES(Sci->Mutex) {
if (Sci->FreeListInfo.BlockList.empty())
return nullptr;
SinglyLinkedList<TransferBatch> &Batches =
Sci->FreeListInfo.BlockList.front()->Batches;
if (Batches.empty()) {
DCHECK_EQ(ClassId, SizeClassMap::BatchClassId);
BatchGroup *BG = Sci->FreeListInfo.BlockList.front();
Sci->FreeListInfo.BlockList.pop_front();
// Block used by `BatchGroup` is from BatchClassId. Turn the block into
// `TransferBatch` with single block.
TransferBatch *TB = reinterpret_cast<TransferBatch *>(BG);
TB->clear();
TB->add(
compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(TB)));
Sci->FreeListInfo.PoppedBlocks += 1;
return TB;
}
TransferBatch *B = Batches.front();
Batches.pop_front();
DCHECK_NE(B, nullptr);
DCHECK_GT(B->getCount(), 0U);
if (Batches.empty()) {
BatchGroup *BG = Sci->FreeListInfo.BlockList.front();
Sci->FreeListInfo.BlockList.pop_front();
// We don't keep BatchGroup with zero blocks to avoid empty-checking while
// allocating. Note that block used by constructing BatchGroup is recorded
// as free blocks in the last element of BatchGroup::Batches. Which means,
// once we pop the last TransferBatch, the block is implicitly
// deallocated.
if (ClassId != SizeClassMap::BatchClassId)
C->deallocate(SizeClassMap::BatchClassId, BG);
}
Sci->FreeListInfo.PoppedBlocks += B->getCount();
return B;
}
NOINLINE bool populateFreeList(CacheT *C, uptr ClassId, SizeClassInfo *Sci)
REQUIRES(Sci->Mutex) {
uptr Region;
uptr Offset;
// If the size-class currently has a region associated to it, use it. The
// newly created blocks will be located after the currently allocated memory
// for that region (up to RegionSize). Otherwise, create a new region, where
// the new blocks will be carved from the beginning.
if (Sci->CurrentRegion) {
Region = Sci->CurrentRegion;
DCHECK_GT(Sci->CurrentRegionAllocated, 0U);
Offset = Sci->CurrentRegionAllocated;
} else {
DCHECK_EQ(Sci->CurrentRegionAllocated, 0U);
Region = allocateRegion(Sci, ClassId);
if (UNLIKELY(!Region))
return false;
C->getStats().add(StatMapped, RegionSize);
Sci->CurrentRegion = Region;
Offset = 0;
}
const uptr Size = getSizeByClassId(ClassId);
const u16 MaxCount = TransferBatch::getMaxCached(Size);
DCHECK_GT(MaxCount, 0U);
// The maximum number of blocks we should carve in the region is dictated
// by the maximum number of batches we want to fill, and the amount of
// memory left in the current region (we use the lowest of the two). This
// will not be 0 as we ensure that a region can at least hold one block (via
// static_assert and at the end of this function).
const u32 NumberOfBlocks =
Min(MaxNumBatches * MaxCount,
static_cast<u32>((RegionSize - Offset) / Size));
DCHECK_GT(NumberOfBlocks, 0U);
constexpr u32 ShuffleArraySize =
MaxNumBatches * TransferBatch::MaxNumCached;
// Fill the transfer batches and put them in the size-class freelist. We
// need to randomize the blocks for security purposes, so we first fill a
// local array that we then shuffle before populating the batches.
CompactPtrT ShuffleArray[ShuffleArraySize];
DCHECK_LE(NumberOfBlocks, ShuffleArraySize);
uptr P = Region + Offset;
for (u32 I = 0; I < NumberOfBlocks; I++, P += Size)
ShuffleArray[I] = reinterpret_cast<CompactPtrT>(P);
if (ClassId != SizeClassMap::BatchClassId) {
u32 N = 1;
uptr CurGroup = compactPtrGroupBase(ShuffleArray[0]);
for (u32 I = 1; I < NumberOfBlocks; I++) {
if (UNLIKELY(compactPtrGroupBase(ShuffleArray[I]) != CurGroup)) {
shuffle(ShuffleArray + I - N, N, &Sci->RandState);
pushBlocksImpl(C, ClassId, Sci, ShuffleArray + I - N, N,
/*SameGroup=*/true);
N = 1;
CurGroup = compactPtrGroupBase(ShuffleArray[I]);
} else {
++N;
}
}
shuffle(ShuffleArray + NumberOfBlocks - N, N, &Sci->RandState);
pushBlocksImpl(C, ClassId, Sci, &ShuffleArray[NumberOfBlocks - N], N,
/*SameGroup=*/true);
} else {
pushBatchClassBlocks(Sci, ShuffleArray, NumberOfBlocks);
}
// Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record
// the requests from `PushBlocks` and `PopBatch` which are external
// interfaces. `populateFreeList` is the internal interface so we should set
// the values back to avoid incorrectly setting the stats.
Sci->FreeListInfo.PushedBlocks -= NumberOfBlocks;
const uptr AllocatedUser = Size * NumberOfBlocks;
C->getStats().add(StatFree, AllocatedUser);
DCHECK_LE(Sci->CurrentRegionAllocated + AllocatedUser, RegionSize);
// If there is not enough room in the region currently associated to fit
// more blocks, we deassociate the region by resetting CurrentRegion and
// CurrentRegionAllocated. Otherwise, update the allocated amount.
if (RegionSize - (Sci->CurrentRegionAllocated + AllocatedUser) < Size) {
Sci->CurrentRegion = 0;
Sci->CurrentRegionAllocated = 0;
} else {
Sci->CurrentRegionAllocated += AllocatedUser;
}
Sci->AllocatedUser += AllocatedUser;
return true;
}
void getStats(ScopedString *Str, uptr ClassId, SizeClassInfo *Sci)
REQUIRES(Sci->Mutex) {
if (Sci->AllocatedUser == 0)
return;
const uptr BlockSize = getSizeByClassId(ClassId);
const uptr InUse =
Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
const uptr BytesInFreeList = Sci->AllocatedUser - InUse * BlockSize;
uptr PushedBytesDelta = 0;
if (BytesInFreeList >= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint) {
PushedBytesDelta =
BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
}
const uptr AvailableChunks = Sci->AllocatedUser / BlockSize;
Str->append(" %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
"inuse: %6zu avail: %6zu releases: %6zu last released: %6zuK "
"latest pushed bytes: %6zuK\n",
ClassId, getSizeByClassId(ClassId), Sci->AllocatedUser >> 10,
Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks,
InUse, AvailableChunks, Sci->ReleaseInfo.RangesReleased,
Sci->ReleaseInfo.LastReleasedBytes >> 10,
PushedBytesDelta >> 10);
}
NOINLINE uptr releaseToOSMaybe(SizeClassInfo *Sci, uptr ClassId,
ReleaseToOS ReleaseType = ReleaseToOS::Normal)
REQUIRES(Sci->Mutex) {
const uptr BlockSize = getSizeByClassId(ClassId);
const uptr PageSize = getPageSizeCached();
DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks);
const uptr BytesInFreeList =
Sci->AllocatedUser -
(Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks) *
BlockSize;
if (UNLIKELY(BytesInFreeList == 0))
return 0;
if (BytesInFreeList <= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint)
Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
// Always update `BytesInFreeListAtLastCheckpoint` with the smallest value
// so that we won't underestimate the releasable pages. For example, the
// following is the region usage,
//
// BytesInFreeListAtLastCheckpoint AllocatedUser
// v v
// |--------------------------------------->
// ^ ^
// BytesInFreeList ReleaseThreshold
//
// In general, if we have collected enough bytes and the amount of free
// bytes meets the ReleaseThreshold, we will try to do page release. If we
// don't update `BytesInFreeListAtLastCheckpoint` when the current
// `BytesInFreeList` is smaller, we may take longer time to wait for enough
// freed blocks because we miss the bytes between
// (BytesInFreeListAtLastCheckpoint - BytesInFreeList).
const uptr PushedBytesDelta =
BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
if (PushedBytesDelta < PageSize && ReleaseType != ReleaseToOS::ForceAll)
return 0;
const bool CheckDensity =
isSmallBlock(BlockSize) && ReleaseType != ReleaseToOS::ForceAll;
// Releasing smaller blocks is expensive, so we want to make sure that a
// significant amount of bytes are free, and that there has been a good
// amount of batches pushed to the freelist before attempting to release.
if (CheckDensity && ReleaseType == ReleaseToOS::Normal)
if (PushedBytesDelta < Sci->AllocatedUser / 16U)
return 0;
if (ReleaseType == ReleaseToOS::Normal) {
const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs);
if (IntervalMs < 0)
return 0;
// The constant 8 here is selected from profiling some apps and the number
// of unreleased pages in the large size classes is around 16 pages or
// more. Choose half of it as a heuristic and which also avoids page
// release every time for every pushBlocks() attempt by large blocks.
const bool ByPassReleaseInterval =
isLargeBlock(BlockSize) && PushedBytesDelta > 8 * PageSize;
if (!ByPassReleaseInterval) {
if (Sci->ReleaseInfo.LastReleaseAtNs +
static_cast<u64>(IntervalMs) * 1000000 >
getMonotonicTimeFast()) {
// Memory was returned recently.
return 0;
}
}
} // if (ReleaseType == ReleaseToOS::Normal)
const uptr First = Sci->MinRegionIndex;
const uptr Last = Sci->MaxRegionIndex;
DCHECK_NE(Last, 0U);
DCHECK_LE(First, Last);
uptr TotalReleasedBytes = 0;
const uptr Base = First * RegionSize;
const uptr NumberOfRegions = Last - First + 1U;
const uptr GroupSize = (1U << GroupSizeLog);
const uptr CurGroupBase =
compactPtrGroupBase(compactPtr(ClassId, Sci->CurrentRegion));
ReleaseRecorder Recorder(Base);
PageReleaseContext Context(BlockSize, NumberOfRegions,
/*ReleaseSize=*/RegionSize);
auto DecompactPtr = [](CompactPtrT CompactPtr) {
return reinterpret_cast<uptr>(CompactPtr);
};
for (BatchGroup &BG : Sci->FreeListInfo.BlockList) {
const uptr GroupBase = decompactGroupBase(BG.CompactPtrGroupBase);
// The `GroupSize` may not be divided by `BlockSize`, which means there is
// an unused space at the end of Region. Exclude that space to avoid
// unused page map entry.
uptr AllocatedGroupSize = GroupBase == CurGroupBase
? Sci->CurrentRegionAllocated
: roundDownSlow(GroupSize, BlockSize);
if (AllocatedGroupSize == 0)
continue;
// TransferBatches are pushed in front of BG.Batches. The first one may
// not have all caches used.
const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch +
BG.Batches.front()->getCount();
const uptr BytesInBG = NumBlocks * BlockSize;
if (ReleaseType != ReleaseToOS::ForceAll &&
BytesInBG <= BG.BytesInBGAtLastCheckpoint) {
BG.BytesInBGAtLastCheckpoint = BytesInBG;
continue;
}
const uptr PushedBytesDelta = BytesInBG - BG.BytesInBGAtLastCheckpoint;
if (ReleaseType != ReleaseToOS::ForceAll && PushedBytesDelta < PageSize)
continue;
// Given the randomness property, we try to release the pages only if the
// bytes used by free blocks exceed certain proportion of allocated
// spaces.
if (CheckDensity && (BytesInBG * 100U) / AllocatedGroupSize <
(100U - 1U - BlockSize / 16U)) {
continue;
}
// TODO: Consider updating this after page release if `ReleaseRecorder`
// can tell the releasd bytes in each group.
BG.BytesInBGAtLastCheckpoint = BytesInBG;
const uptr MaxContainedBlocks = AllocatedGroupSize / BlockSize;
const uptr RegionIndex = (GroupBase - Base) / RegionSize;
if (NumBlocks == MaxContainedBlocks) {
for (const auto &It : BG.Batches)
for (u16 I = 0; I < It.getCount(); ++I)
DCHECK_EQ(compactPtrGroupBase(It.get(I)), BG.CompactPtrGroupBase);
const uptr To = GroupBase + AllocatedGroupSize;
Context.markRangeAsAllCounted(GroupBase, To, GroupBase, RegionIndex,
AllocatedGroupSize);
} else {
DCHECK_LT(NumBlocks, MaxContainedBlocks);
// Note that we don't always visit blocks in each BatchGroup so that we
// may miss the chance of releasing certain pages that cross
// BatchGroups.
Context.markFreeBlocksInRegion(BG.Batches, DecompactPtr, GroupBase,
RegionIndex, AllocatedGroupSize,
/*MayContainLastBlockInRegion=*/true);
}
// We may not be able to do the page release In a rare case that we may
// fail on PageMap allocation.
if (UNLIKELY(!Context.hasBlockMarked()))
return 0;
}
if (!Context.hasBlockMarked())
return 0;
auto SkipRegion = [this, First, ClassId](uptr RegionIndex) {
ScopedLock L(ByteMapMutex);
return (PossibleRegions[First + RegionIndex] - 1U) != ClassId;
};
releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
if (Recorder.getReleasedRangesCount() > 0) {
Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
Sci->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
Sci->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
TotalReleasedBytes += Sci->ReleaseInfo.LastReleasedBytes;
}
Sci->ReleaseInfo.LastReleaseAtNs = getMonotonicTimeFast();
return TotalReleasedBytes;
}
SizeClassInfo SizeClassInfoArray[NumClasses] = {};
HybridMutex ByteMapMutex;
// Track the regions in use, 0 is unused, otherwise store ClassId + 1.
ByteMap PossibleRegions GUARDED_BY(ByteMapMutex) = {};
atomic_s32 ReleaseToOsIntervalMs = {};
// Unless several threads request regions simultaneously from different size
// classes, the stash rarely contains more than 1 entry.
static constexpr uptr MaxStashedRegions = 4;
HybridMutex RegionsStashMutex;
uptr NumberOfStashedRegions GUARDED_BY(RegionsStashMutex) = 0;
uptr RegionsStash[MaxStashedRegions] GUARDED_BY(RegionsStashMutex) = {};
};
} // namespace scudo
#endif // SCUDO_PRIMARY32_H_
|