1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
|
//===-- primary64.h ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_PRIMARY64_H_
#define SCUDO_PRIMARY64_H_
#include "bytemap.h"
#include "common.h"
#include "list.h"
#include "local_cache.h"
#include "mem_map.h"
#include "memtag.h"
#include "options.h"
#include "release.h"
#include "stats.h"
#include "string_utils.h"
#include "thread_annotations.h"
namespace scudo {
// SizeClassAllocator64 is an allocator tuned for 64-bit address space.
//
// It starts by reserving NumClasses * 2^RegionSizeLog bytes, equally divided in
// Regions, specific to each size class. Note that the base of that mapping is
// random (based to the platform specific map() capabilities). If
// PrimaryEnableRandomOffset is set, each Region actually starts at a random
// offset from its base.
//
// Regions are mapped incrementally on demand to fulfill allocation requests,
// those mappings being split into equally sized Blocks based on the size class
// they belong to. The Blocks created are shuffled to prevent predictable
// address patterns (the predictability increases with the size of the Blocks).
//
// The 1st Region (for size class 0) holds the TransferBatches. This is a
// structure used to transfer arrays of available pointers from the class size
// freelist to the thread specific freelist, and back.
//
// The memory used by this allocator is never unmapped, but can be partially
// released if the platform allows for it.
template <typename Config> class SizeClassAllocator64 {
public:
typedef typename Config::Primary::CompactPtrT CompactPtrT;
typedef typename Config::Primary::SizeClassMap SizeClassMap;
static const uptr CompactPtrScale = Config::Primary::CompactPtrScale;
static const uptr GroupSizeLog = Config::Primary::GroupSizeLog;
static const uptr GroupScale = GroupSizeLog - CompactPtrScale;
typedef SizeClassAllocator64<Config> ThisT;
typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
typedef typename CacheT::TransferBatch TransferBatch;
typedef typename CacheT::BatchGroup BatchGroup;
static uptr getSizeByClassId(uptr ClassId) {
return (ClassId == SizeClassMap::BatchClassId)
? roundUp(sizeof(TransferBatch), 1U << CompactPtrScale)
: SizeClassMap::getSizeByClassId(ClassId);
}
static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }
void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS {
DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT)));
const uptr PageSize = getPageSizeCached();
const uptr GroupSize = (1U << GroupSizeLog);
const uptr PagesInGroup = GroupSize / PageSize;
const uptr MinSizeClass = getSizeByClassId(1);
// When trying to release pages back to memory, visiting smaller size
// classes is expensive. Therefore, we only try to release smaller size
// classes when the amount of free blocks goes over a certain threshold (See
// the comment in releaseToOSMaybe() for more details). For example, for
// size class 32, we only do the release when the size of free blocks is
// greater than 97% of pages in a group. However, this may introduce another
// issue that if the number of free blocks is bouncing between 97% ~ 100%.
// Which means we may try many page releases but only release very few of
// them (less than 3% in a group). Even though we have
// `&ReleaseToOsIntervalMs` which slightly reduce the frequency of these
// calls but it will be better to have another guard to mitigate this issue.
//
// Here we add another constraint on the minimum size requirement. The
// constraint is determined by the size of in-use blocks in the minimal size
// class. Take size class 32 as an example,
//
// +- one memory group -+
// +----------------------+------+
// | 97% of free blocks | |
// +----------------------+------+
// \ /
// 3% in-use blocks
//
// * The release size threshold is 97%.
//
// The 3% size in a group is about 7 pages. For two consecutive
// releaseToOSMaybe(), we require the difference between `PushedBlocks`
// should be greater than 7 pages. This mitigates the page releasing
// thrashing which is caused by memory usage bouncing around the threshold.
// The smallest size class takes longest time to do the page release so we
// use its size of in-use blocks as a heuristic.
SmallerBlockReleasePageDelta =
PagesInGroup * (1 + MinSizeClass / 16U) / 100;
// Reserve the space required for the Primary.
CHECK(ReservedMemory.create(/*Addr=*/0U, PrimarySize,
"scudo:primary_reserve"));
PrimaryBase = ReservedMemory.getBase();
DCHECK_NE(PrimaryBase, 0U);
u32 Seed;
const u64 Time = getMonotonicTimeFast();
if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed)))
Seed = static_cast<u32>(Time ^ (PrimaryBase >> 12));
for (uptr I = 0; I < NumClasses; I++) {
RegionInfo *Region = getRegionInfo(I);
// The actual start of a region is offset by a random number of pages
// when PrimaryEnableRandomOffset is set.
Region->RegionBeg =
(PrimaryBase + (I << Config::Primary::RegionSizeLog)) +
(Config::Primary::EnableRandomOffset
? ((getRandomModN(&Seed, 16) + 1) * PageSize)
: 0);
Region->RandState = getRandomU32(&Seed);
// Releasing small blocks is expensive, set a higher threshold to avoid
// frequent page releases.
if (isSmallBlock(getSizeByClassId(I)))
Region->TryReleaseThreshold = PageSize * SmallerBlockReleasePageDelta;
else
Region->TryReleaseThreshold = PageSize;
Region->ReleaseInfo.LastReleaseAtNs = Time;
Region->MemMapInfo.MemMap = ReservedMemory.dispatch(
PrimaryBase + (I << Config::Primary::RegionSizeLog), RegionSize);
CHECK(Region->MemMapInfo.MemMap.isAllocated());
}
shuffle(RegionInfoArray, NumClasses, &Seed);
setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
}
void unmapTestOnly() NO_THREAD_SAFETY_ANALYSIS {
for (uptr I = 0; I < NumClasses; I++) {
RegionInfo *Region = getRegionInfo(I);
*Region = {};
}
if (PrimaryBase)
ReservedMemory.release();
PrimaryBase = 0U;
}
// When all blocks are freed, it has to be the same size as `AllocatedUser`.
void verifyAllBlocksAreReleasedTestOnly() {
// `BatchGroup` and `TransferBatch` also use the blocks from BatchClass.
uptr BatchClassUsedInFreeLists = 0;
for (uptr I = 0; I < NumClasses; I++) {
// We have to count BatchClassUsedInFreeLists in other regions first.
if (I == SizeClassMap::BatchClassId)
continue;
RegionInfo *Region = getRegionInfo(I);
ScopedLock ML(Region->MMLock);
ScopedLock FL(Region->FLLock);
const uptr BlockSize = getSizeByClassId(I);
uptr TotalBlocks = 0;
for (BatchGroup &BG : Region->FreeListInfo.BlockList) {
// `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`.
BatchClassUsedInFreeLists += BG.Batches.size() + 1;
for (const auto &It : BG.Batches)
TotalBlocks += It.getCount();
}
DCHECK_EQ(TotalBlocks, Region->MemMapInfo.AllocatedUser / BlockSize);
DCHECK_EQ(Region->FreeListInfo.PushedBlocks,
Region->FreeListInfo.PoppedBlocks);
}
RegionInfo *Region = getRegionInfo(SizeClassMap::BatchClassId);
ScopedLock ML(Region->MMLock);
ScopedLock FL(Region->FLLock);
const uptr BlockSize = getSizeByClassId(SizeClassMap::BatchClassId);
uptr TotalBlocks = 0;
for (BatchGroup &BG : Region->FreeListInfo.BlockList) {
if (LIKELY(!BG.Batches.empty())) {
for (const auto &It : BG.Batches)
TotalBlocks += It.getCount();
} else {
// `BatchGroup` with empty freelist doesn't have `TransferBatch` record
// itself.
++TotalBlocks;
}
}
DCHECK_EQ(TotalBlocks + BatchClassUsedInFreeLists,
Region->MemMapInfo.AllocatedUser / BlockSize);
DCHECK_GE(Region->FreeListInfo.PoppedBlocks,
Region->FreeListInfo.PushedBlocks);
const uptr BlocksInUse =
Region->FreeListInfo.PoppedBlocks - Region->FreeListInfo.PushedBlocks;
DCHECK_EQ(BlocksInUse, BatchClassUsedInFreeLists);
}
TransferBatch *popBatch(CacheT *C, uptr ClassId) {
DCHECK_LT(ClassId, NumClasses);
RegionInfo *Region = getRegionInfo(ClassId);
{
ScopedLock L(Region->FLLock);
TransferBatch *B = popBatchImpl(C, ClassId, Region);
if (LIKELY(B))
return B;
}
bool PrintStats = false;
TransferBatch *B = nullptr;
while (true) {
// When two threads compete for `Region->MMLock`, we only want one of them
// does the populateFreeListAndPopBatch(). To avoid both of them doing
// that, always check the freelist before mapping new pages.
//
// TODO(chiahungduan): Use a condition variable so that we don't need to
// hold `Region->MMLock` here.
ScopedLock ML(Region->MMLock);
{
ScopedLock FL(Region->FLLock);
B = popBatchImpl(C, ClassId, Region);
if (LIKELY(B))
return B;
}
const bool RegionIsExhausted = Region->Exhausted;
if (!RegionIsExhausted)
B = populateFreeListAndPopBatch(C, ClassId, Region);
PrintStats = !RegionIsExhausted && Region->Exhausted;
break;
}
// Note that `getStats()` requires locking each region so we can't call it
// while locking the Region->Mutex in the above.
if (UNLIKELY(PrintStats)) {
ScopedString Str;
getStats(&Str);
Str.append(
"Scudo OOM: The process has exhausted %zuM for size class %zu.\n",
RegionSize >> 20, getSizeByClassId(ClassId));
Str.output();
// Theoretically, BatchClass shouldn't be used up. Abort immediately when
// it happens.
if (ClassId == SizeClassMap::BatchClassId)
reportOutOfBatchClass();
}
return B;
}
// Push the array of free blocks to the designated batch group.
void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) {
DCHECK_LT(ClassId, NumClasses);
DCHECK_GT(Size, 0);
RegionInfo *Region = getRegionInfo(ClassId);
if (ClassId == SizeClassMap::BatchClassId) {
ScopedLock L(Region->FLLock);
pushBatchClassBlocks(Region, Array, Size);
return;
}
// TODO(chiahungduan): Consider not doing grouping if the group size is not
// greater than the block size with a certain scale.
// Sort the blocks so that blocks belonging to the same group can be pushed
// together.
bool SameGroup = true;
for (u32 I = 1; I < Size; ++I) {
if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I]))
SameGroup = false;
CompactPtrT Cur = Array[I];
u32 J = I;
while (J > 0 && compactPtrGroup(Cur) < compactPtrGroup(Array[J - 1])) {
Array[J] = Array[J - 1];
--J;
}
Array[J] = Cur;
}
{
ScopedLock L(Region->FLLock);
pushBlocksImpl(C, ClassId, Region, Array, Size, SameGroup);
}
}
void disable() NO_THREAD_SAFETY_ANALYSIS {
// The BatchClassId must be locked last since other classes can use it.
for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
continue;
getRegionInfo(static_cast<uptr>(I))->MMLock.lock();
getRegionInfo(static_cast<uptr>(I))->FLLock.lock();
}
getRegionInfo(SizeClassMap::BatchClassId)->MMLock.lock();
getRegionInfo(SizeClassMap::BatchClassId)->FLLock.lock();
}
void enable() NO_THREAD_SAFETY_ANALYSIS {
getRegionInfo(SizeClassMap::BatchClassId)->FLLock.unlock();
getRegionInfo(SizeClassMap::BatchClassId)->MMLock.unlock();
for (uptr I = 0; I < NumClasses; I++) {
if (I == SizeClassMap::BatchClassId)
continue;
getRegionInfo(I)->FLLock.unlock();
getRegionInfo(I)->MMLock.unlock();
}
}
template <typename F> void iterateOverBlocks(F Callback) {
for (uptr I = 0; I < NumClasses; I++) {
if (I == SizeClassMap::BatchClassId)
continue;
RegionInfo *Region = getRegionInfo(I);
// TODO: The call of `iterateOverBlocks` requires disabling
// SizeClassAllocator64. We may consider locking each region on demand
// only.
Region->FLLock.assertHeld();
Region->MMLock.assertHeld();
const uptr BlockSize = getSizeByClassId(I);
const uptr From = Region->RegionBeg;
const uptr To = From + Region->MemMapInfo.AllocatedUser;
for (uptr Block = From; Block < To; Block += BlockSize)
Callback(Block);
}
}
void getStats(ScopedString *Str) {
// TODO(kostyak): get the RSS per region.
uptr TotalMapped = 0;
uptr PoppedBlocks = 0;
uptr PushedBlocks = 0;
for (uptr I = 0; I < NumClasses; I++) {
RegionInfo *Region = getRegionInfo(I);
{
ScopedLock L(Region->MMLock);
TotalMapped += Region->MemMapInfo.MappedUser;
}
{
ScopedLock L(Region->FLLock);
PoppedBlocks += Region->FreeListInfo.PoppedBlocks;
PushedBlocks += Region->FreeListInfo.PushedBlocks;
}
}
Str->append("Stats: SizeClassAllocator64: %zuM mapped (%uM rss) in %zu "
"allocations; remains %zu\n",
TotalMapped >> 20, 0U, PoppedBlocks,
PoppedBlocks - PushedBlocks);
for (uptr I = 0; I < NumClasses; I++) {
RegionInfo *Region = getRegionInfo(I);
ScopedLock L1(Region->MMLock);
ScopedLock L2(Region->FLLock);
getStats(Str, I, Region);
}
}
bool setOption(Option O, sptr Value) {
if (O == Option::ReleaseInterval) {
const s32 Interval = Max(Min(static_cast<s32>(Value),
Config::Primary::MaxReleaseToOsIntervalMs),
Config::Primary::MinReleaseToOsIntervalMs);
atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
return true;
}
// Not supported by the Primary, but not an error either.
return true;
}
uptr tryReleaseToOS(uptr ClassId, ReleaseToOS ReleaseType) {
RegionInfo *Region = getRegionInfo(ClassId);
// Note that the tryLock() may fail spuriously, given that it should rarely
// happen and page releasing is fine to skip, we don't take certain
// approaches to ensure one page release is done.
if (Region->MMLock.tryLock()) {
uptr BytesReleased = releaseToOSMaybe(Region, ClassId, ReleaseType);
Region->MMLock.unlock();
return BytesReleased;
}
return 0;
}
uptr releaseToOS(ReleaseToOS ReleaseType) {
uptr TotalReleasedBytes = 0;
for (uptr I = 0; I < NumClasses; I++) {
if (I == SizeClassMap::BatchClassId)
continue;
RegionInfo *Region = getRegionInfo(I);
ScopedLock L(Region->MMLock);
TotalReleasedBytes += releaseToOSMaybe(Region, I, ReleaseType);
}
return TotalReleasedBytes;
}
const char *getRegionInfoArrayAddress() const {
return reinterpret_cast<const char *>(RegionInfoArray);
}
static uptr getRegionInfoArraySize() { return sizeof(RegionInfoArray); }
uptr getCompactPtrBaseByClassId(uptr ClassId) {
return getRegionInfo(ClassId)->RegionBeg;
}
CompactPtrT compactPtr(uptr ClassId, uptr Ptr) {
DCHECK_LE(ClassId, SizeClassMap::LargestClassId);
return compactPtrInternal(getCompactPtrBaseByClassId(ClassId), Ptr);
}
void *decompactPtr(uptr ClassId, CompactPtrT CompactPtr) {
DCHECK_LE(ClassId, SizeClassMap::LargestClassId);
return reinterpret_cast<void *>(
decompactPtrInternal(getCompactPtrBaseByClassId(ClassId), CompactPtr));
}
static BlockInfo findNearestBlock(const char *RegionInfoData,
uptr Ptr) NO_THREAD_SAFETY_ANALYSIS {
const RegionInfo *RegionInfoArray =
reinterpret_cast<const RegionInfo *>(RegionInfoData);
uptr ClassId;
uptr MinDistance = -1UL;
for (uptr I = 0; I != NumClasses; ++I) {
if (I == SizeClassMap::BatchClassId)
continue;
uptr Begin = RegionInfoArray[I].RegionBeg;
// TODO(chiahungduan): In fact, We need to lock the RegionInfo::MMLock.
// However, the RegionInfoData is passed with const qualifier and lock the
// mutex requires modifying RegionInfoData, which means we need to remove
// the const qualifier. This may lead to another undefined behavior (The
// first one is accessing `AllocatedUser` without locking. It's better to
// pass `RegionInfoData` as `void *` then we can lock the mutex properly.
uptr End = Begin + RegionInfoArray[I].MemMapInfo.AllocatedUser;
if (Begin > End || End - Begin < SizeClassMap::getSizeByClassId(I))
continue;
uptr RegionDistance;
if (Begin <= Ptr) {
if (Ptr < End)
RegionDistance = 0;
else
RegionDistance = Ptr - End;
} else {
RegionDistance = Begin - Ptr;
}
if (RegionDistance < MinDistance) {
MinDistance = RegionDistance;
ClassId = I;
}
}
BlockInfo B = {};
if (MinDistance <= 8192) {
B.RegionBegin = RegionInfoArray[ClassId].RegionBeg;
B.RegionEnd =
B.RegionBegin + RegionInfoArray[ClassId].MemMapInfo.AllocatedUser;
B.BlockSize = SizeClassMap::getSizeByClassId(ClassId);
B.BlockBegin =
B.RegionBegin + uptr(sptr(Ptr - B.RegionBegin) / sptr(B.BlockSize) *
sptr(B.BlockSize));
while (B.BlockBegin < B.RegionBegin)
B.BlockBegin += B.BlockSize;
while (B.RegionEnd < B.BlockBegin + B.BlockSize)
B.BlockBegin -= B.BlockSize;
}
return B;
}
AtomicOptions Options;
private:
static const uptr RegionSize = 1UL << Config::Primary::RegionSizeLog;
static const uptr NumClasses = SizeClassMap::NumClasses;
static const uptr PrimarySize = RegionSize * NumClasses;
static const uptr MapSizeIncrement = Config::Primary::MapSizeIncrement;
// Fill at most this number of batches from the newly map'd memory.
static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
struct ReleaseToOsInfo {
uptr BytesInFreeListAtLastCheckpoint;
uptr RangesReleased;
uptr LastReleasedBytes;
u64 LastReleaseAtNs;
};
struct BlocksInfo {
SinglyLinkedList<BatchGroup> BlockList = {};
uptr PoppedBlocks = 0;
uptr PushedBlocks = 0;
};
struct PagesInfo {
MemMapT MemMap = {};
// Bytes mapped for user memory.
uptr MappedUser = 0;
// Bytes allocated for user memory.
uptr AllocatedUser = 0;
};
struct UnpaddedRegionInfo {
// Mutex for operations on freelist
HybridMutex FLLock;
// Mutex for memmap operations
HybridMutex MMLock ACQUIRED_BEFORE(FLLock);
// `RegionBeg` is initialized before thread creation and won't be changed.
uptr RegionBeg = 0;
u32 RandState GUARDED_BY(MMLock) = 0;
BlocksInfo FreeListInfo GUARDED_BY(FLLock);
PagesInfo MemMapInfo GUARDED_BY(MMLock);
// The minimum size of pushed blocks to trigger page release.
uptr TryReleaseThreshold GUARDED_BY(MMLock) = 0;
ReleaseToOsInfo ReleaseInfo GUARDED_BY(MMLock) = {};
bool Exhausted GUARDED_BY(MMLock) = false;
};
struct RegionInfo : UnpaddedRegionInfo {
char Padding[SCUDO_CACHE_LINE_SIZE -
(sizeof(UnpaddedRegionInfo) % SCUDO_CACHE_LINE_SIZE)] = {};
};
static_assert(sizeof(RegionInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");
RegionInfo *getRegionInfo(uptr ClassId) {
DCHECK_LT(ClassId, NumClasses);
return &RegionInfoArray[ClassId];
}
uptr getRegionBaseByClassId(uptr ClassId) {
return roundDown(getRegionInfo(ClassId)->RegionBeg - PrimaryBase,
RegionSize) +
PrimaryBase;
}
static CompactPtrT compactPtrInternal(uptr Base, uptr Ptr) {
return static_cast<CompactPtrT>((Ptr - Base) >> CompactPtrScale);
}
static uptr decompactPtrInternal(uptr Base, CompactPtrT CompactPtr) {
return Base + (static_cast<uptr>(CompactPtr) << CompactPtrScale);
}
static uptr compactPtrGroup(CompactPtrT CompactPtr) {
const uptr Mask = (static_cast<uptr>(1) << GroupScale) - 1;
return static_cast<uptr>(CompactPtr) & ~Mask;
}
static uptr decompactGroupBase(uptr Base, uptr CompactPtrGroupBase) {
DCHECK_EQ(CompactPtrGroupBase % (static_cast<uptr>(1) << (GroupScale)), 0U);
return Base + (CompactPtrGroupBase << CompactPtrScale);
}
ALWAYS_INLINE static bool isSmallBlock(uptr BlockSize) {
const uptr PageSize = getPageSizeCached();
return BlockSize < PageSize / 16U;
}
ALWAYS_INLINE static bool isLargeBlock(uptr BlockSize) {
const uptr PageSize = getPageSizeCached();
return BlockSize > PageSize;
}
void pushBatchClassBlocks(RegionInfo *Region, CompactPtrT *Array, u32 Size)
REQUIRES(Region->FLLock) {
DCHECK_EQ(Region, getRegionInfo(SizeClassMap::BatchClassId));
// Free blocks are recorded by TransferBatch in freelist for all
// size-classes. In addition, TransferBatch is allocated from BatchClassId.
// In order not to use additional block to record the free blocks in
// BatchClassId, they are self-contained. I.e., A TransferBatch records the
// block address of itself. See the figure below:
//
// TransferBatch at 0xABCD
// +----------------------------+
// | Free blocks' addr |
// | +------+------+------+ |
// | |0xABCD|... |... | |
// | +------+------+------+ |
// +----------------------------+
//
// When we allocate all the free blocks in the TransferBatch, the block used
// by TransferBatch is also free for use. We don't need to recycle the
// TransferBatch. Note that the correctness is maintained by the invariant,
//
// The unit of each popBatch() request is entire TransferBatch. Return
// part of the blocks in a TransferBatch is invalid.
//
// This ensures that TransferBatch won't leak the address itself while it's
// still holding other valid data.
//
// Besides, BatchGroup is also allocated from BatchClassId and has its
// address recorded in the TransferBatch too. To maintain the correctness,
//
// The address of BatchGroup is always recorded in the last TransferBatch
// in the freelist (also imply that the freelist should only be
// updated with push_front). Once the last TransferBatch is popped,
// the block used by BatchGroup is also free for use.
//
// With this approach, the blocks used by BatchGroup and TransferBatch are
// reusable and don't need additional space for them.
Region->FreeListInfo.PushedBlocks += Size;
BatchGroup *BG = Region->FreeListInfo.BlockList.front();
if (BG == nullptr) {
// Construct `BatchGroup` on the last element.
BG = reinterpret_cast<BatchGroup *>(
decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
--Size;
BG->Batches.clear();
// BatchClass hasn't enabled memory group. Use `0` to indicate there's no
// memory group here.
BG->CompactPtrGroupBase = 0;
// `BG` is also the block of BatchClassId. Note that this is different
// from `CreateGroup` in `pushBlocksImpl`
BG->PushedBlocks = 1;
BG->BytesInBGAtLastCheckpoint = 0;
BG->MaxCachedPerBatch = TransferBatch::getMaxCached(
getSizeByClassId(SizeClassMap::BatchClassId));
Region->FreeListInfo.BlockList.push_front(BG);
}
if (UNLIKELY(Size == 0))
return;
// This happens under 2 cases.
// 1. just allocated a new `BatchGroup`.
// 2. Only 1 block is pushed when the freelist is empty.
if (BG->Batches.empty()) {
// Construct the `TransferBatch` on the last element.
TransferBatch *TB = reinterpret_cast<TransferBatch *>(
decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
TB->clear();
// As mentioned above, addresses of `TransferBatch` and `BatchGroup` are
// recorded in the TransferBatch.
TB->add(Array[Size - 1]);
TB->add(
compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(BG)));
--Size;
DCHECK_EQ(BG->PushedBlocks, 1U);
// `TB` is also the block of BatchClassId.
BG->PushedBlocks += 1;
BG->Batches.push_front(TB);
}
TransferBatch *CurBatch = BG->Batches.front();
DCHECK_NE(CurBatch, nullptr);
for (u32 I = 0; I < Size;) {
u16 UnusedSlots =
static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
if (UnusedSlots == 0) {
CurBatch = reinterpret_cast<TransferBatch *>(
decompactPtr(SizeClassMap::BatchClassId, Array[I]));
CurBatch->clear();
// Self-contained
CurBatch->add(Array[I]);
++I;
// TODO(chiahungduan): Avoid the use of push_back() in `Batches` of
// BatchClassId.
BG->Batches.push_front(CurBatch);
UnusedSlots = static_cast<u16>(BG->MaxCachedPerBatch - 1);
}
// `UnusedSlots` is u16 so the result will be also fit in u16.
const u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
CurBatch->appendFromArray(&Array[I], AppendSize);
I += AppendSize;
}
BG->PushedBlocks += Size;
}
// Push the blocks to their batch group. The layout will be like,
//
// FreeListInfo.BlockList - > BG -> BG -> BG
// | | |
// v v v
// TB TB TB
// |
// v
// TB
//
// Each BlockGroup(BG) will associate with unique group id and the free blocks
// are managed by a list of TransferBatch(TB). To reduce the time of inserting
// blocks, BGs are sorted and the input `Array` are supposed to be sorted so
// that we can get better performance of maintaining sorted property.
// Use `SameGroup=true` to indicate that all blocks in the array are from the
// same group then we will skip checking the group id of each block.
void pushBlocksImpl(CacheT *C, uptr ClassId, RegionInfo *Region,
CompactPtrT *Array, u32 Size, bool SameGroup = false)
REQUIRES(Region->FLLock) {
DCHECK_NE(ClassId, SizeClassMap::BatchClassId);
DCHECK_GT(Size, 0U);
auto CreateGroup = [&](uptr CompactPtrGroupBase) {
BatchGroup *BG = C->createGroup();
BG->Batches.clear();
TransferBatch *TB = C->createBatch(ClassId, nullptr);
TB->clear();
BG->CompactPtrGroupBase = CompactPtrGroupBase;
BG->Batches.push_front(TB);
BG->PushedBlocks = 0;
BG->BytesInBGAtLastCheckpoint = 0;
BG->MaxCachedPerBatch =
TransferBatch::getMaxCached(getSizeByClassId(ClassId));
return BG;
};
auto InsertBlocks = [&](BatchGroup *BG, CompactPtrT *Array, u32 Size) {
SinglyLinkedList<TransferBatch> &Batches = BG->Batches;
TransferBatch *CurBatch = Batches.front();
DCHECK_NE(CurBatch, nullptr);
for (u32 I = 0; I < Size;) {
DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount());
u16 UnusedSlots =
static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
if (UnusedSlots == 0) {
CurBatch = C->createBatch(
ClassId,
reinterpret_cast<void *>(decompactPtr(ClassId, Array[I])));
CurBatch->clear();
Batches.push_front(CurBatch);
UnusedSlots = BG->MaxCachedPerBatch;
}
// `UnusedSlots` is u16 so the result will be also fit in u16.
u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
CurBatch->appendFromArray(&Array[I], AppendSize);
I += AppendSize;
}
BG->PushedBlocks += Size;
};
Region->FreeListInfo.PushedBlocks += Size;
BatchGroup *Cur = Region->FreeListInfo.BlockList.front();
if (ClassId == SizeClassMap::BatchClassId) {
if (Cur == nullptr) {
// Don't need to classify BatchClassId.
Cur = CreateGroup(/*CompactPtrGroupBase=*/0);
Region->FreeListInfo.BlockList.push_front(Cur);
}
InsertBlocks(Cur, Array, Size);
return;
}
// In the following, `Cur` always points to the BatchGroup for blocks that
// will be pushed next. `Prev` is the element right before `Cur`.
BatchGroup *Prev = nullptr;
while (Cur != nullptr &&
compactPtrGroup(Array[0]) > Cur->CompactPtrGroupBase) {
Prev = Cur;
Cur = Cur->Next;
}
if (Cur == nullptr ||
compactPtrGroup(Array[0]) != Cur->CompactPtrGroupBase) {
Cur = CreateGroup(compactPtrGroup(Array[0]));
if (Prev == nullptr)
Region->FreeListInfo.BlockList.push_front(Cur);
else
Region->FreeListInfo.BlockList.insert(Prev, Cur);
}
// All the blocks are from the same group, just push without checking group
// id.
if (SameGroup) {
for (u32 I = 0; I < Size; ++I)
DCHECK_EQ(compactPtrGroup(Array[I]), Cur->CompactPtrGroupBase);
InsertBlocks(Cur, Array, Size);
return;
}
// The blocks are sorted by group id. Determine the segment of group and
// push them to their group together.
u32 Count = 1;
for (u32 I = 1; I < Size; ++I) {
if (compactPtrGroup(Array[I - 1]) != compactPtrGroup(Array[I])) {
DCHECK_EQ(compactPtrGroup(Array[I - 1]), Cur->CompactPtrGroupBase);
InsertBlocks(Cur, Array + I - Count, Count);
while (Cur != nullptr &&
compactPtrGroup(Array[I]) > Cur->CompactPtrGroupBase) {
Prev = Cur;
Cur = Cur->Next;
}
if (Cur == nullptr ||
compactPtrGroup(Array[I]) != Cur->CompactPtrGroupBase) {
Cur = CreateGroup(compactPtrGroup(Array[I]));
DCHECK_NE(Prev, nullptr);
Region->FreeListInfo.BlockList.insert(Prev, Cur);
}
Count = 1;
} else {
++Count;
}
}
InsertBlocks(Cur, Array + Size - Count, Count);
}
// Pop one TransferBatch from a BatchGroup. The BatchGroup with the smallest
// group id will be considered first.
//
// The region mutex needs to be held while calling this method.
TransferBatch *popBatchImpl(CacheT *C, uptr ClassId, RegionInfo *Region)
REQUIRES(Region->FLLock) {
if (Region->FreeListInfo.BlockList.empty())
return nullptr;
SinglyLinkedList<TransferBatch> &Batches =
Region->FreeListInfo.BlockList.front()->Batches;
if (Batches.empty()) {
DCHECK_EQ(ClassId, SizeClassMap::BatchClassId);
BatchGroup *BG = Region->FreeListInfo.BlockList.front();
Region->FreeListInfo.BlockList.pop_front();
// Block used by `BatchGroup` is from BatchClassId. Turn the block into
// `TransferBatch` with single block.
TransferBatch *TB = reinterpret_cast<TransferBatch *>(BG);
TB->clear();
TB->add(
compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(TB)));
Region->FreeListInfo.PoppedBlocks += 1;
return TB;
}
TransferBatch *B = Batches.front();
Batches.pop_front();
DCHECK_NE(B, nullptr);
DCHECK_GT(B->getCount(), 0U);
if (Batches.empty()) {
BatchGroup *BG = Region->FreeListInfo.BlockList.front();
Region->FreeListInfo.BlockList.pop_front();
// We don't keep BatchGroup with zero blocks to avoid empty-checking while
// allocating. Note that block used by constructing BatchGroup is recorded
// as free blocks in the last element of BatchGroup::Batches. Which means,
// once we pop the last TransferBatch, the block is implicitly
// deallocated.
if (ClassId != SizeClassMap::BatchClassId)
C->deallocate(SizeClassMap::BatchClassId, BG);
}
Region->FreeListInfo.PoppedBlocks += B->getCount();
return B;
}
// Refill the freelist and return one batch.
NOINLINE TransferBatch *populateFreeListAndPopBatch(CacheT *C, uptr ClassId,
RegionInfo *Region)
REQUIRES(Region->MMLock) EXCLUDES(Region->FLLock) {
const uptr Size = getSizeByClassId(ClassId);
const u16 MaxCount = TransferBatch::getMaxCached(Size);
const uptr RegionBeg = Region->RegionBeg;
const uptr MappedUser = Region->MemMapInfo.MappedUser;
const uptr TotalUserBytes =
Region->MemMapInfo.AllocatedUser + MaxCount * Size;
// Map more space for blocks, if necessary.
if (TotalUserBytes > MappedUser) {
// Do the mmap for the user memory.
const uptr MapSize =
roundUp(TotalUserBytes - MappedUser, MapSizeIncrement);
const uptr RegionBase = RegionBeg - getRegionBaseByClassId(ClassId);
if (UNLIKELY(RegionBase + MappedUser + MapSize > RegionSize)) {
Region->Exhausted = true;
return nullptr;
}
if (UNLIKELY(!Region->MemMapInfo.MemMap.remap(
RegionBeg + MappedUser, MapSize, "scudo:primary",
MAP_ALLOWNOMEM | MAP_RESIZABLE |
(useMemoryTagging<Config>(Options.load()) ? MAP_MEMTAG
: 0)))) {
return nullptr;
}
Region->MemMapInfo.MappedUser += MapSize;
C->getStats().add(StatMapped, MapSize);
}
const u32 NumberOfBlocks =
Min(MaxNumBatches * MaxCount,
static_cast<u32>((Region->MemMapInfo.MappedUser -
Region->MemMapInfo.AllocatedUser) /
Size));
DCHECK_GT(NumberOfBlocks, 0);
constexpr u32 ShuffleArraySize =
MaxNumBatches * TransferBatch::MaxNumCached;
CompactPtrT ShuffleArray[ShuffleArraySize];
DCHECK_LE(NumberOfBlocks, ShuffleArraySize);
const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId);
uptr P = RegionBeg + Region->MemMapInfo.AllocatedUser;
for (u32 I = 0; I < NumberOfBlocks; I++, P += Size)
ShuffleArray[I] = compactPtrInternal(CompactPtrBase, P);
ScopedLock L(Region->FLLock);
if (ClassId != SizeClassMap::BatchClassId) {
u32 N = 1;
uptr CurGroup = compactPtrGroup(ShuffleArray[0]);
for (u32 I = 1; I < NumberOfBlocks; I++) {
if (UNLIKELY(compactPtrGroup(ShuffleArray[I]) != CurGroup)) {
shuffle(ShuffleArray + I - N, N, &Region->RandState);
pushBlocksImpl(C, ClassId, Region, ShuffleArray + I - N, N,
/*SameGroup=*/true);
N = 1;
CurGroup = compactPtrGroup(ShuffleArray[I]);
} else {
++N;
}
}
shuffle(ShuffleArray + NumberOfBlocks - N, N, &Region->RandState);
pushBlocksImpl(C, ClassId, Region, &ShuffleArray[NumberOfBlocks - N], N,
/*SameGroup=*/true);
} else {
pushBatchClassBlocks(Region, ShuffleArray, NumberOfBlocks);
}
TransferBatch *B = popBatchImpl(C, ClassId, Region);
DCHECK_NE(B, nullptr);
// Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record
// the requests from `PushBlocks` and `PopBatch` which are external
// interfaces. `populateFreeListAndPopBatch` is the internal interface so we
// should set the values back to avoid incorrectly setting the stats.
Region->FreeListInfo.PushedBlocks -= NumberOfBlocks;
const uptr AllocatedUser = Size * NumberOfBlocks;
C->getStats().add(StatFree, AllocatedUser);
Region->MemMapInfo.AllocatedUser += AllocatedUser;
return B;
}
void getStats(ScopedString *Str, uptr ClassId, RegionInfo *Region)
REQUIRES(Region->MMLock, Region->FLLock) {
if (Region->MemMapInfo.MappedUser == 0)
return;
const uptr BlockSize = getSizeByClassId(ClassId);
const uptr InUse =
Region->FreeListInfo.PoppedBlocks - Region->FreeListInfo.PushedBlocks;
const uptr BytesInFreeList =
Region->MemMapInfo.AllocatedUser - InUse * BlockSize;
uptr RegionPushedBytesDelta = 0;
if (BytesInFreeList >=
Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint) {
RegionPushedBytesDelta =
BytesInFreeList - Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
}
const uptr TotalChunks = Region->MemMapInfo.AllocatedUser / BlockSize;
Str->append(
"%s %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
"inuse: %6zu total: %6zu releases: %6zu last "
"released: %6zuK latest pushed bytes: %6zuK region: 0x%zx (0x%zx)\n",
Region->Exhausted ? "F" : " ", ClassId, getSizeByClassId(ClassId),
Region->MemMapInfo.MappedUser >> 10, Region->FreeListInfo.PoppedBlocks,
Region->FreeListInfo.PushedBlocks, InUse, TotalChunks,
Region->ReleaseInfo.RangesReleased,
Region->ReleaseInfo.LastReleasedBytes >> 10,
RegionPushedBytesDelta >> 10, Region->RegionBeg,
getRegionBaseByClassId(ClassId));
}
NOINLINE uptr releaseToOSMaybe(RegionInfo *Region, uptr ClassId,
ReleaseToOS ReleaseType = ReleaseToOS::Normal)
REQUIRES(Region->MMLock) EXCLUDES(Region->FLLock) {
ScopedLock L(Region->FLLock);
const uptr BlockSize = getSizeByClassId(ClassId);
const uptr BytesInFreeList =
Region->MemMapInfo.AllocatedUser - (Region->FreeListInfo.PoppedBlocks -
Region->FreeListInfo.PushedBlocks) *
BlockSize;
if (UNLIKELY(BytesInFreeList == 0))
return false;
const uptr AllocatedUserEnd =
Region->MemMapInfo.AllocatedUser + Region->RegionBeg;
const uptr CompactPtrBase = getCompactPtrBaseByClassId(ClassId);
// ====================================================================== //
// 1. Check if we have enough free blocks and if it's worth doing a page
// release.
// ====================================================================== //
if (ReleaseType != ReleaseToOS::ForceAll &&
!hasChanceToReleasePages(Region, BlockSize, BytesInFreeList,
ReleaseType)) {
return 0;
}
// ====================================================================== //
// 2. Determine which groups can release the pages. Use a heuristic to
// gather groups that are candidates for doing a release.
// ====================================================================== //
SinglyLinkedList<BatchGroup> GroupsToRelease;
if (ReleaseType == ReleaseToOS::ForceAll) {
GroupsToRelease = Region->FreeListInfo.BlockList;
Region->FreeListInfo.BlockList.clear();
} else {
GroupsToRelease = collectGroupsToRelease(
Region, BlockSize, AllocatedUserEnd, CompactPtrBase);
}
if (GroupsToRelease.empty())
return 0;
// Ideally, we should use a class like `ScopedUnlock`. However, this form of
// unlocking is not supported by the thread-safety analysis. See
// https://clang.llvm.org/docs/ThreadSafetyAnalysis.html#no-alias-analysis
// for more details.
// Put it as local class so that we can mark the ctor/dtor with proper
// annotations associated to the target lock. Note that accessing the
// function variable in local class only works in thread-safety annotations.
// TODO: Implement general `ScopedUnlock` when it's supported.
class FLLockScopedUnlock {
public:
FLLockScopedUnlock(RegionInfo *Region) RELEASE(Region->FLLock)
: R(Region) {
R->FLLock.assertHeld();
R->FLLock.unlock();
}
~FLLockScopedUnlock() ACQUIRE(Region->FLLock) { R->FLLock.lock(); }
private:
RegionInfo *R;
};
// Note that we have extracted the `GroupsToRelease` from region freelist.
// It's safe to let pushBlocks()/popBatches() access the remaining region
// freelist. In the steps 3 and 4, we will temporarily release the FLLock
// and lock it again before step 5.
uptr ReleasedBytes = 0;
{
FLLockScopedUnlock UL(Region);
// ==================================================================== //
// 3. Mark the free blocks in `GroupsToRelease` in the
// `PageReleaseContext`. Then we can tell which pages are in-use by
// querying `PageReleaseContext`.
// ==================================================================== //
PageReleaseContext Context = markFreeBlocks(
Region, BlockSize, AllocatedUserEnd, CompactPtrBase, GroupsToRelease);
if (UNLIKELY(!Context.hasBlockMarked())) {
ScopedLock L(Region->FLLock);
mergeGroupsToReleaseBack(Region, GroupsToRelease);
return 0;
}
// ==================================================================== //
// 4. Release the unused physical pages back to the OS.
// ==================================================================== //
RegionReleaseRecorder<MemMapT> Recorder(&Region->MemMapInfo.MemMap,
Region->RegionBeg,
Context.getReleaseOffset());
auto SkipRegion = [](UNUSED uptr RegionIndex) { return false; };
releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
if (Recorder.getReleasedRangesCount() > 0) {
Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
Region->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
Region->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
}
Region->ReleaseInfo.LastReleaseAtNs = getMonotonicTimeFast();
ReleasedBytes = Recorder.getReleasedBytes();
}
// ====================================================================== //
// 5. Merge the `GroupsToRelease` back to the freelist.
// ====================================================================== //
mergeGroupsToReleaseBack(Region, GroupsToRelease);
return ReleasedBytes;
}
bool hasChanceToReleasePages(RegionInfo *Region, uptr BlockSize,
uptr BytesInFreeList, ReleaseToOS ReleaseType)
REQUIRES(Region->MMLock, Region->FLLock) {
DCHECK_GE(Region->FreeListInfo.PoppedBlocks,
Region->FreeListInfo.PushedBlocks);
const uptr PageSize = getPageSizeCached();
// Always update `BytesInFreeListAtLastCheckpoint` with the smallest value
// so that we won't underestimate the releasable pages. For example, the
// following is the region usage,
//
// BytesInFreeListAtLastCheckpoint AllocatedUser
// v v
// |--------------------------------------->
// ^ ^
// BytesInFreeList ReleaseThreshold
//
// In general, if we have collected enough bytes and the amount of free
// bytes meets the ReleaseThreshold, we will try to do page release. If we
// don't update `BytesInFreeListAtLastCheckpoint` when the current
// `BytesInFreeList` is smaller, we may take longer time to wait for enough
// freed blocks because we miss the bytes between
// (BytesInFreeListAtLastCheckpoint - BytesInFreeList).
if (BytesInFreeList <=
Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint) {
Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
}
const uptr RegionPushedBytesDelta =
BytesInFreeList - Region->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
if (RegionPushedBytesDelta < PageSize)
return false;
// Releasing smaller blocks is expensive, so we want to make sure that a
// significant amount of bytes are free, and that there has been a good
// amount of batches pushed to the freelist before attempting to release.
if (isSmallBlock(BlockSize) && ReleaseType == ReleaseToOS::Normal)
if (RegionPushedBytesDelta < Region->TryReleaseThreshold)
return false;
if (ReleaseType == ReleaseToOS::Normal) {
const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs);
if (IntervalMs < 0)
return false;
// The constant 8 here is selected from profiling some apps and the number
// of unreleased pages in the large size classes is around 16 pages or
// more. Choose half of it as a heuristic and which also avoids page
// release every time for every pushBlocks() attempt by large blocks.
const bool ByPassReleaseInterval =
isLargeBlock(BlockSize) && RegionPushedBytesDelta > 8 * PageSize;
if (!ByPassReleaseInterval) {
if (Region->ReleaseInfo.LastReleaseAtNs +
static_cast<u64>(IntervalMs) * 1000000 >
getMonotonicTimeFast()) {
// Memory was returned recently.
return false;
}
}
} // if (ReleaseType == ReleaseToOS::Normal)
return true;
}
SinglyLinkedList<BatchGroup>
collectGroupsToRelease(RegionInfo *Region, const uptr BlockSize,
const uptr AllocatedUserEnd, const uptr CompactPtrBase)
REQUIRES(Region->MMLock, Region->FLLock) {
const uptr GroupSize = (1U << GroupSizeLog);
const uptr PageSize = getPageSizeCached();
SinglyLinkedList<BatchGroup> GroupsToRelease;
// We are examining each group and will take the minimum distance to the
// release threshold as the next Region::TryReleaseThreshold(). Note that if
// the size of free blocks has reached the release threshold, the distance
// to the next release will be PageSize * SmallerBlockReleasePageDelta. See
// the comment on `SmallerBlockReleasePageDelta` for more details.
uptr MinDistToThreshold = GroupSize;
for (BatchGroup *BG = Region->FreeListInfo.BlockList.front(),
*Prev = nullptr;
BG != nullptr;) {
// Group boundary is always GroupSize-aligned from CompactPtr base. The
// layout of memory groups is like,
//
// (CompactPtrBase)
// #1 CompactPtrGroupBase #2 CompactPtrGroupBase ...
// | | |
// v v v
// +-----------------------+-----------------------+
// \ / \ /
// --- GroupSize --- --- GroupSize ---
//
// After decompacting the CompactPtrGroupBase, we expect the alignment
// property is held as well.
const uptr BatchGroupBase =
decompactGroupBase(CompactPtrBase, BG->CompactPtrGroupBase);
DCHECK_LE(Region->RegionBeg, BatchGroupBase);
DCHECK_GE(AllocatedUserEnd, BatchGroupBase);
DCHECK_EQ((Region->RegionBeg - BatchGroupBase) % GroupSize, 0U);
// TransferBatches are pushed in front of BG.Batches. The first one may
// not have all caches used.
const uptr NumBlocks = (BG->Batches.size() - 1) * BG->MaxCachedPerBatch +
BG->Batches.front()->getCount();
const uptr BytesInBG = NumBlocks * BlockSize;
if (BytesInBG <= BG->BytesInBGAtLastCheckpoint) {
BG->BytesInBGAtLastCheckpoint = BytesInBG;
Prev = BG;
BG = BG->Next;
continue;
}
const uptr PushedBytesDelta = BG->BytesInBGAtLastCheckpoint - BytesInBG;
// Given the randomness property, we try to release the pages only if the
// bytes used by free blocks exceed certain proportion of group size. Note
// that this heuristic only applies when all the spaces in a BatchGroup
// are allocated.
if (isSmallBlock(BlockSize)) {
const uptr BatchGroupEnd = BatchGroupBase + GroupSize;
const uptr AllocatedGroupSize = AllocatedUserEnd >= BatchGroupEnd
? GroupSize
: AllocatedUserEnd - BatchGroupBase;
const uptr ReleaseThreshold =
(AllocatedGroupSize * (100 - 1U - BlockSize / 16U)) / 100U;
const bool HighDensity = BytesInBG >= ReleaseThreshold;
const bool MayHaveReleasedAll = NumBlocks >= (GroupSize / BlockSize);
// If all blocks in the group are released, we will do range marking
// which is fast. Otherwise, we will wait until we have accumulated
// a certain amount of free memory.
const bool ReachReleaseDelta =
MayHaveReleasedAll
? true
: PushedBytesDelta >= PageSize * SmallerBlockReleasePageDelta;
if (!HighDensity) {
DCHECK_LE(BytesInBG, ReleaseThreshold);
// The following is the usage of a memroy group,
//
// BytesInBG ReleaseThreshold
// / \ v
// +---+---------------------------+-----+
// | | | | |
// +---+---------------------------+-----+
// \ / ^
// PushedBytesDelta GroupEnd
MinDistToThreshold =
Min(MinDistToThreshold,
ReleaseThreshold - BytesInBG + PushedBytesDelta);
} else {
// If it reaches high density at this round, the next time we will try
// to release is based on SmallerBlockReleasePageDelta
MinDistToThreshold =
Min(MinDistToThreshold, PageSize * SmallerBlockReleasePageDelta);
}
if (!HighDensity || !ReachReleaseDelta) {
Prev = BG;
BG = BG->Next;
continue;
}
}
// If `BG` is the first BatchGroup in the list, we only need to advance
// `BG` and call FreeListInfo.BlockList::pop_front(). No update is needed
// for `Prev`.
//
// (BG) (BG->Next)
// Prev Cur BG
// | | |
// v v v
// nil +--+ +--+
// |X | -> | | -> ...
// +--+ +--+
//
// Otherwise, `Prev` will be used to extract the `Cur` from the
// `FreeListInfo.BlockList`.
//
// (BG) (BG->Next)
// Prev Cur BG
// | | |
// v v v
// +--+ +--+ +--+
// | | -> |X | -> | | -> ...
// +--+ +--+ +--+
//
// After FreeListInfo.BlockList::extract(),
//
// Prev Cur BG
// | | |
// v v v
// +--+ +--+ +--+
// | |-+ |X | +->| | -> ...
// +--+ | +--+ | +--+
// +--------+
//
// Note that we need to advance before pushing this BatchGroup to
// GroupsToRelease because it's a destructive operation.
BatchGroup *Cur = BG;
BG = BG->Next;
// Ideally, we may want to update this only after successful release.
// However, for smaller blocks, each block marking is a costly operation.
// Therefore, we update it earlier.
// TODO: Consider updating this after releasing pages if `ReleaseRecorder`
// can tell the released bytes in each group.
Cur->BytesInBGAtLastCheckpoint = BytesInBG;
if (Prev != nullptr)
Region->FreeListInfo.BlockList.extract(Prev, Cur);
else
Region->FreeListInfo.BlockList.pop_front();
GroupsToRelease.push_back(Cur);
}
// Only small blocks have the adaptive `TryReleaseThreshold`.
if (isSmallBlock(BlockSize)) {
// If the MinDistToThreshold is not updated, that means each memory group
// may have only pushed less than a page size. In that case, just set it
// back to normal.
if (MinDistToThreshold == GroupSize)
MinDistToThreshold = PageSize * SmallerBlockReleasePageDelta;
Region->TryReleaseThreshold = MinDistToThreshold;
}
return GroupsToRelease;
}
PageReleaseContext
markFreeBlocks(RegionInfo *Region, const uptr BlockSize,
const uptr AllocatedUserEnd, const uptr CompactPtrBase,
SinglyLinkedList<BatchGroup> &GroupsToRelease)
REQUIRES(Region->MMLock) EXCLUDES(Region->FLLock) {
const uptr GroupSize = (1U << GroupSizeLog);
auto DecompactPtr = [CompactPtrBase](CompactPtrT CompactPtr) {
return decompactPtrInternal(CompactPtrBase, CompactPtr);
};
const uptr ReleaseBase = decompactGroupBase(
CompactPtrBase, GroupsToRelease.front()->CompactPtrGroupBase);
const uptr LastGroupEnd =
Min(decompactGroupBase(CompactPtrBase,
GroupsToRelease.back()->CompactPtrGroupBase) +
GroupSize,
AllocatedUserEnd);
// The last block may straddle the group boundary. Rounding up to BlockSize
// to get the exact range.
const uptr ReleaseEnd =
roundUpSlow(LastGroupEnd - Region->RegionBeg, BlockSize) +
Region->RegionBeg;
const uptr ReleaseRangeSize = ReleaseEnd - ReleaseBase;
const uptr ReleaseOffset = ReleaseBase - Region->RegionBeg;
PageReleaseContext Context(BlockSize, /*NumberOfRegions=*/1U,
ReleaseRangeSize, ReleaseOffset);
// We may not be able to do the page release in a rare case that we may
// fail on PageMap allocation.
if (UNLIKELY(!Context.ensurePageMapAllocated()))
return Context;
for (BatchGroup &BG : GroupsToRelease) {
const uptr BatchGroupBase =
decompactGroupBase(CompactPtrBase, BG.CompactPtrGroupBase);
const uptr BatchGroupEnd = BatchGroupBase + GroupSize;
const uptr AllocatedGroupSize = AllocatedUserEnd >= BatchGroupEnd
? GroupSize
: AllocatedUserEnd - BatchGroupBase;
const uptr BatchGroupUsedEnd = BatchGroupBase + AllocatedGroupSize;
const bool MayContainLastBlockInRegion =
BatchGroupUsedEnd == AllocatedUserEnd;
const bool BlockAlignedWithUsedEnd =
(BatchGroupUsedEnd - Region->RegionBeg) % BlockSize == 0;
uptr MaxContainedBlocks = AllocatedGroupSize / BlockSize;
if (!BlockAlignedWithUsedEnd)
++MaxContainedBlocks;
const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch +
BG.Batches.front()->getCount();
if (NumBlocks == MaxContainedBlocks) {
for (const auto &It : BG.Batches) {
if (&It != BG.Batches.front())
DCHECK_EQ(It.getCount(), BG.MaxCachedPerBatch);
for (u16 I = 0; I < It.getCount(); ++I)
DCHECK_EQ(compactPtrGroup(It.get(I)), BG.CompactPtrGroupBase);
}
Context.markRangeAsAllCounted(BatchGroupBase, BatchGroupUsedEnd,
Region->RegionBeg, /*RegionIndex=*/0,
Region->MemMapInfo.AllocatedUser);
} else {
DCHECK_LT(NumBlocks, MaxContainedBlocks);
// Note that we don't always visit blocks in each BatchGroup so that we
// may miss the chance of releasing certain pages that cross
// BatchGroups.
Context.markFreeBlocksInRegion(
BG.Batches, DecompactPtr, Region->RegionBeg, /*RegionIndex=*/0,
Region->MemMapInfo.AllocatedUser, MayContainLastBlockInRegion);
}
}
DCHECK(Context.hasBlockMarked());
return Context;
}
void mergeGroupsToReleaseBack(RegionInfo *Region,
SinglyLinkedList<BatchGroup> &GroupsToRelease)
REQUIRES(Region->MMLock, Region->FLLock) {
// After merging two freelists, we may have redundant `BatchGroup`s that
// need to be recycled. The number of unused `BatchGroup`s is expected to be
// small. Pick a constant which is inferred from real programs.
constexpr uptr MaxUnusedSize = 8;
CompactPtrT Blocks[MaxUnusedSize];
u32 Idx = 0;
RegionInfo *BatchClassRegion = getRegionInfo(SizeClassMap::BatchClassId);
// We can't call pushBatchClassBlocks() to recycle the unused `BatchGroup`s
// when we are manipulating the freelist of `BatchClassRegion`. Instead, we
// should just push it back to the freelist when we merge two `BatchGroup`s.
// This logic hasn't been implemented because we haven't supported releasing
// pages in `BatchClassRegion`.
DCHECK_NE(BatchClassRegion, Region);
// Merge GroupsToRelease back to the Region::FreeListInfo.BlockList. Note
// that both `Region->FreeListInfo.BlockList` and `GroupsToRelease` are
// sorted.
for (BatchGroup *BG = Region->FreeListInfo.BlockList.front(),
*Prev = nullptr;
;) {
if (BG == nullptr || GroupsToRelease.empty()) {
if (!GroupsToRelease.empty())
Region->FreeListInfo.BlockList.append_back(&GroupsToRelease);
break;
}
DCHECK(!BG->Batches.empty());
if (BG->CompactPtrGroupBase <
GroupsToRelease.front()->CompactPtrGroupBase) {
Prev = BG;
BG = BG->Next;
continue;
}
BatchGroup *Cur = GroupsToRelease.front();
TransferBatch *UnusedTransferBatch = nullptr;
GroupsToRelease.pop_front();
if (BG->CompactPtrGroupBase == Cur->CompactPtrGroupBase) {
BG->PushedBlocks += Cur->PushedBlocks;
// We have updated `BatchGroup::BytesInBGAtLastCheckpoint` while
// collecting the `GroupsToRelease`.
BG->BytesInBGAtLastCheckpoint = Cur->BytesInBGAtLastCheckpoint;
const uptr MaxCachedPerBatch = BG->MaxCachedPerBatch;
// Note that the first TransferBatches in both `Batches` may not be
// full and only the first TransferBatch can have non-full blocks. Thus
// we have to merge them before appending one to another.
if (Cur->Batches.front()->getCount() == MaxCachedPerBatch) {
BG->Batches.append_back(&Cur->Batches);
} else {
TransferBatch *NonFullBatch = Cur->Batches.front();
Cur->Batches.pop_front();
const u16 NonFullBatchCount = NonFullBatch->getCount();
// The remaining Batches in `Cur` are full.
BG->Batches.append_back(&Cur->Batches);
if (BG->Batches.front()->getCount() == MaxCachedPerBatch) {
// Only 1 non-full TransferBatch, push it to the front.
BG->Batches.push_front(NonFullBatch);
} else {
const u16 NumBlocksToMove = static_cast<u16>(
Min(static_cast<u16>(MaxCachedPerBatch -
BG->Batches.front()->getCount()),
NonFullBatchCount));
BG->Batches.front()->appendFromTransferBatch(NonFullBatch,
NumBlocksToMove);
if (NonFullBatch->isEmpty())
UnusedTransferBatch = NonFullBatch;
else
BG->Batches.push_front(NonFullBatch);
}
}
const u32 NeededSlots = UnusedTransferBatch == nullptr ? 1U : 2U;
if (UNLIKELY(Idx + NeededSlots > MaxUnusedSize)) {
ScopedLock L(BatchClassRegion->FLLock);
pushBatchClassBlocks(BatchClassRegion, Blocks, Idx);
Idx = 0;
}
Blocks[Idx++] =
compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(Cur));
if (UnusedTransferBatch) {
Blocks[Idx++] =
compactPtr(SizeClassMap::BatchClassId,
reinterpret_cast<uptr>(UnusedTransferBatch));
}
Prev = BG;
BG = BG->Next;
continue;
}
// At here, the `BG` is the first BatchGroup with CompactPtrGroupBase
// larger than the first element in `GroupsToRelease`. We need to insert
// `GroupsToRelease::front()` (which is `Cur` below) before `BG`.
//
// 1. If `Prev` is nullptr, we simply push `Cur` to the front of
// FreeListInfo.BlockList.
// 2. Otherwise, use `insert()` which inserts an element next to `Prev`.
//
// Afterwards, we don't need to advance `BG` because the order between
// `BG` and the new `GroupsToRelease::front()` hasn't been checked.
if (Prev == nullptr)
Region->FreeListInfo.BlockList.push_front(Cur);
else
Region->FreeListInfo.BlockList.insert(Prev, Cur);
DCHECK_EQ(Cur->Next, BG);
Prev = Cur;
}
if (Idx != 0) {
ScopedLock L(BatchClassRegion->FLLock);
pushBatchClassBlocks(BatchClassRegion, Blocks, Idx);
}
if (SCUDO_DEBUG) {
BatchGroup *Prev = Region->FreeListInfo.BlockList.front();
for (BatchGroup *Cur = Prev->Next; Cur != nullptr;
Prev = Cur, Cur = Cur->Next) {
CHECK_LT(Prev->CompactPtrGroupBase, Cur->CompactPtrGroupBase);
}
}
}
// TODO: `PrimaryBase` can be obtained from ReservedMemory. This needs to be
// deprecated.
uptr PrimaryBase = 0;
ReservedMemoryT ReservedMemory = {};
// The minimum size of pushed blocks that we will try to release the pages in
// that size class.
uptr SmallerBlockReleasePageDelta = 0;
atomic_s32 ReleaseToOsIntervalMs = {};
alignas(SCUDO_CACHE_LINE_SIZE) RegionInfo RegionInfoArray[NumClasses];
};
} // namespace scudo
#endif // SCUDO_PRIMARY64_H_
|