1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
//===-- timing.h ------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_TIMING_H_
#define SCUDO_TIMING_H_
#include "common.h"
#include "mutex.h"
#include "string_utils.h"
#include "thread_annotations.h"
#include <inttypes.h>
#include <string.h>
namespace scudo {
class TimingManager;
// A simple timer for evaluating execution time of code snippets. It can be used
// along with TimingManager or standalone.
class Timer {
public:
// The use of Timer without binding to a TimingManager is supposed to do the
// timer logging manually. Otherwise, TimingManager will do the logging stuff
// for you.
Timer() = default;
Timer(Timer &&Other)
: StartTime(0), AccTime(Other.AccTime), Manager(Other.Manager),
HandleId(Other.HandleId) {
Other.Manager = nullptr;
}
Timer(const Timer &) = delete;
~Timer();
void start() {
CHECK_EQ(StartTime, 0U);
StartTime = getMonotonicTime();
}
void stop() {
AccTime += getMonotonicTime() - StartTime;
StartTime = 0;
}
u64 getAccumulatedTime() const { return AccTime; }
// Unset the bound TimingManager so that we don't report the data back. This
// is useful if we only want to track subset of certain scope events.
void ignore() {
StartTime = 0;
AccTime = 0;
Manager = nullptr;
}
protected:
friend class TimingManager;
Timer(TimingManager &Manager, u32 HandleId)
: Manager(&Manager), HandleId(HandleId) {}
u64 StartTime = 0;
u64 AccTime = 0;
TimingManager *Manager = nullptr;
u32 HandleId;
};
// A RAII-style wrapper for easy scope execution measurement. Note that in order
// not to take additional space for the message like `Name`. It only works with
// TimingManager.
class ScopedTimer : public Timer {
public:
ScopedTimer(TimingManager &Manager, const char *Name);
ScopedTimer(TimingManager &Manager, const Timer &Nest, const char *Name);
~ScopedTimer() { stop(); }
};
// In Scudo, the execution time of single run of code snippets may not be
// useful, we are more interested in the average time from several runs.
// TimingManager lets the registered timer report their data and reports the
// average execution time for each timer periodically.
class TimingManager {
public:
TimingManager(u32 PrintingInterval = DefaultPrintingInterval)
: PrintingInterval(PrintingInterval) {}
~TimingManager() {
if (NumAllocatedTimers != 0)
printAll();
}
Timer getOrCreateTimer(const char *Name) EXCLUDES(Mutex) {
ScopedLock L(Mutex);
CHECK_LT(strlen(Name), MaxLenOfTimerName);
for (u32 I = 0; I < NumAllocatedTimers; ++I) {
if (strncmp(Name, Timers[I].Name, MaxLenOfTimerName) == 0)
return Timer(*this, I);
}
CHECK_LT(NumAllocatedTimers, MaxNumberOfTimers);
strncpy(Timers[NumAllocatedTimers].Name, Name, MaxLenOfTimerName);
TimerRecords[NumAllocatedTimers].AccumulatedTime = 0;
TimerRecords[NumAllocatedTimers].Occurrence = 0;
return Timer(*this, NumAllocatedTimers++);
}
// Add a sub-Timer associated with another Timer. This is used when we want to
// detail the execution time in the scope of a Timer.
// For example,
// void Foo() {
// // T1 records the time spent in both first and second tasks.
// ScopedTimer T1(getTimingManager(), "Task1");
// {
// // T2 records the time spent in first task
// ScopedTimer T2(getTimingManager, T1, "Task2");
// // Do first task.
// }
// // Do second task.
// }
//
// The report will show proper indents to indicate the nested relation like,
// -- Average Operation Time -- -- Name (# of Calls) --
// 10.0(ns) Task1 (1)
// 5.0(ns) Task2 (1)
Timer nest(const Timer &T, const char *Name) EXCLUDES(Mutex) {
CHECK_EQ(T.Manager, this);
Timer Nesting = getOrCreateTimer(Name);
ScopedLock L(Mutex);
CHECK_NE(Nesting.HandleId, T.HandleId);
Timers[Nesting.HandleId].Nesting = T.HandleId;
return Nesting;
}
void report(const Timer &T) EXCLUDES(Mutex) {
ScopedLock L(Mutex);
const u32 HandleId = T.HandleId;
CHECK_LT(HandleId, MaxNumberOfTimers);
TimerRecords[HandleId].AccumulatedTime += T.getAccumulatedTime();
++TimerRecords[HandleId].Occurrence;
++NumEventsReported;
if (NumEventsReported % PrintingInterval == 0)
printAllImpl();
}
void printAll() EXCLUDES(Mutex) {
ScopedLock L(Mutex);
printAllImpl();
}
private:
void printAllImpl() REQUIRES(Mutex) {
static char NameHeader[] = "-- Name (# of Calls) --";
static char AvgHeader[] = "-- Average Operation Time --";
ScopedString Str;
Str.append("%-15s %-15s\n", AvgHeader, NameHeader);
for (u32 I = 0; I < NumAllocatedTimers; ++I) {
if (Timers[I].Nesting != MaxNumberOfTimers)
continue;
printImpl(Str, I);
}
Str.output();
}
void printImpl(ScopedString &Str, const u32 HandleId,
const u32 ExtraIndent = 0) REQUIRES(Mutex) {
const u64 AccumulatedTime = TimerRecords[HandleId].AccumulatedTime;
const u64 Occurrence = TimerRecords[HandleId].Occurrence;
const u64 Integral = Occurrence == 0 ? 0 : AccumulatedTime / Occurrence;
// Only keep single digit of fraction is enough and it enables easier layout
// maintenance.
const u64 Fraction =
Occurrence == 0 ? 0
: ((AccumulatedTime % Occurrence) * 10) / Occurrence;
Str.append("%14" PRId64 ".%" PRId64 "(ns) %-11s", Integral, Fraction, " ");
for (u32 I = 0; I < ExtraIndent; ++I)
Str.append("%s", " ");
Str.append("%s (%" PRId64 ")\n", Timers[HandleId].Name, Occurrence);
for (u32 I = 0; I < NumAllocatedTimers; ++I)
if (Timers[I].Nesting == HandleId)
printImpl(Str, I, ExtraIndent + 1);
}
// Instead of maintaining pages for timer registration, a static buffer is
// sufficient for most use cases in Scudo.
static constexpr u32 MaxNumberOfTimers = 50;
static constexpr u32 MaxLenOfTimerName = 50;
static constexpr u32 DefaultPrintingInterval = 100;
struct Record {
u64 AccumulatedTime = 0;
u64 Occurrence = 0;
};
struct TimerInfo {
char Name[MaxLenOfTimerName + 1];
u32 Nesting = MaxNumberOfTimers;
};
HybridMutex Mutex;
// The frequency of proactively dumping the timer statistics. For example, the
// default setting is to dump the statistics every 100 reported events.
u32 PrintingInterval GUARDED_BY(Mutex);
u64 NumEventsReported GUARDED_BY(Mutex) = 0;
u32 NumAllocatedTimers GUARDED_BY(Mutex) = 0;
TimerInfo Timers[MaxNumberOfTimers] GUARDED_BY(Mutex);
Record TimerRecords[MaxNumberOfTimers] GUARDED_BY(Mutex);
};
} // namespace scudo
#endif // SCUDO_TIMING_H_
|